Seismic behaviour and design of modern masonry buildings: current status and future needs

Dr. Svetlana Brzev, PEng, FEC

Adjunct Professor, Department of Civil Engineering University of British Columbia (UBC), Vancouver, Canada Email: sbrzev@mail.ubc.ca

Distinguished Webinar Series

February 9, 2022

Acknowledgments

- UBC graduate students Dr. Brook Robazza, Nazli Azimikor, Dr. Jose Centeno, and Yu-Cheng Hsu
- BCIT undergraduate students (2010-2015)
- UBC collaborators: professors Don Anderson, Tony Yang, and Ken Elwood
- Bill McEwen, P.Eng. retired Executive Director, Masonry Institute of British Columbia (MIBC)

CANADA

• Prof. Khaled Galal, Concordia University

Topics

- **1**. Modern masonry buildings
- 2. Seismic design of reinforced masonry wall structures in Canada
- **3**. Seismic behaviour and failure mechanisms
- 4. Future research needs

1. MODERN MASONRY BUILDINGS

Early Achievements: Tall Masonry Buildings in the USA

Source: Klingner & The Masonry Society

- Monadnock Building, Chicago, USA
- Constructed in 1889
- 16-storey loadbearing masonry building
- Unreinforced masonry walls, 1.8 m thick at the base and 0.3 m at the top

Tall Masonry Buildings in China

- 98 m tall office building in Harbin built in 2013
- 300 mm thick concrete block walls, vertical reinforcement with mechanical couplers
- Masonry construction competitive with RC shear walls - in terms of the overall cost (less steel), construction time (15 months), and reduced carbon emission

Wang, Zhang, and Zhu (2016)

Tall Masonry Buildings in Canada

- Very few examples, mostly in Eastern Canada
- Three 16-storey towers in Richmond (Vancouver), constructed in 1960s
- Exterior walls giant bricks interior walls most likely concrete blocks

Common Masonry Construction Practice in Canada: Low-Rise Buildings

- Mostly low-rise buildings
- Example: a school building in Vancouver
- Concrete block masonry walls with concrete brick veneers

Reinforced Masonry (RM) Construction

- Hollow concrete blocks (with 2 holes/cores)
- Vertical reinforcement placed in hollow cores
- Horizontal reinforcement: joint reinforcement and/or bond beam reinforcement

Source: Brzev and Anderson (2018)

RM Wall Construction: Vertical Reinforcement

Laying blocks and mortar

Placing vertical reinforcement

Horizontal Reinforcement

Bond beam reinforcement

Joint (ladder) reinforcement

Grouting

Grout is like micro-concrete: a mix of cement and sand (fine grout), and in some cases small-size aggregate (coarse grout)

2. SEISMIC DESIGN OF REINFORCED MASONRY WALL STRUCTURES IN CANADA

Seismic Design of Masonry Shear Wall Structures in Canada

- Design to meet the requirements of Canadian masonry design standard CSA S304-14 (published in 2014) and the National Building Code of Canada 2015 (or 2020)
- Seismic design considerations similar to RC shear walls: capacity design, shear resistance restrictions, wall height-to-thickness ratio restrictions
- Seismic detailing requirements related to the extent of grouting, amount and distribution of reinforcement, spacing of reinforcement, hooks for horizontal reinforcement

Resource: Seismic Design Guide for Masonry Buildings (Brzev and Anderson 2018)

Explains seismic design provisions of CSA S304-14 and presents design examples

Electronic version available free of charge - see link below

https://ccmpa.ca/download/seismicdesign-guide-for-masonry-buildings/

Masonry Wall Classes for Seismic Design per the National Building Code of Canada 2015

	1.	Unreinforced	$R_{d} = 1.0$
Referred to as Ductile RM shear walls by CSA S304-14	2.	Conventional Construction	R _d = 1.5
	3.	Moderately Ductile	R _d = 2.0
	4.	Moderately Ductile Squat	R _d = 2.0
	5.	Ductile	R _d = 3.0
	R _d is ductility force reduction factor: 1.0 indicates elastic		

(non-ductile) performance

R_o is overstrength factor - equal to 1.5 for all masonry classes

Product $R_d x R_o$ - used for seismic design

Types of Ductile RM Shear Walls: Difference in Grouting and End Zones

Note: horizontal reinforcement was omitted from the diagram

Conventional Construction (R_d= 1.5)

- Most widely used RM wall category in Canada
- Less ductile performance expected than other wall classes
- Simple design and detailing similar to design for wind effects
- Capacity design approach needs to be followed to avoid shear failure

Conventional Construction (R_d = 1.5): Detailing Requirements

Moderately Ductile Shear Walls (R_d= 2.0)

- Mandatory for postdisaster buildings irrespective of seismic hazard level
- Plastic hinge zone either partially or fully grouted
- Partially grouted walls intended for post-disaster buildings at low seismic hazard sites

Moderately Ductile Shear Walls (R_d = 2.0): Detailing Requirements

Ductile Shear Walls (R_d= 3.0)

- This class was first introduced in 2014 (CSA S304-14)
- Based on several experimental studies on RM shear walls from Canada, USA and New Zealand performed since 2004.
- The results indicated that RM shear walls have a significant ductility potential, and that the maximum permitted R_d = 2.0 value per the 2004 masonry standard was overly conservative.
- Higher R_d value for ductile walls in line with the provisions of other international standards (e.g. USA and New Zealand)

Ductile Shear Walls (R_d = 3.0): Detailing requirements

Plastic Hinge Region: A Detailing Requirement

- Plastic hinge is a region of the member where inelastic deformations and damage are expected to occur <-> plastic hinge length *l_p*
- It is important to ensure full grouting of ductile RM walls within the plastic hinge region (grouted RM walls have significantly higher masonry shear resistance)
- CSA S304 prescribes *I_p* value depending on the wall class

CSA S304-14 Key Seismic Design Requirements for RM Shear Walls

- Capacity design approach (to avoid shear failure)
- 2. Shear resistance limits
- Ductility check (to ensure ductile flexural behaviour)
- 4. Wall height/thickness limits (to avoid instability)

Capacity Design Approach -Required for Ductile Seismic Behaviour

Source: Brzev and Anderson (2018)

Capacity Design Approach: Shear Failure to be Avoided!

Use M_n for Moderately Ductile $(R_d = 2.0)!$

Source: Brzev and Anderson (2018)

CSA S304-14 Capacity Minimum Shear Resistance

Capacity design

For the design of RM shear walls, the factored shear resistance, ν_r , should be greater than the shear due to effects of factored loads, but not less than the smaller of

- the shear corresponding to the development of moment resistance, as follows:
 - a. the shear corresponding to the development of *factored moment resistance*, M, of the wall system at its plastic hinge location for Conventional Construction (CI.16.5.4) or Moderately Ductile Squat (CI.16.7.3.2) shear walls,
 - b. the shear corresponding to the development of *nominal moment capacity*, M_n , for Moderately Ductile shear walls (CI.16.8.9.2),
 - c. the shear corresponding to the development of probable moment capacity, M_p , for Ductile shear walls (Cl.16.9.8.3) and walls with boundary elements (Cl.16.10.4.3), and
- the shear corresponding to the lateral seismic load (base shear) where earthquake effects were calculated using R_dR_o=1.3.

Shear Resistance for Ductile RM Walls

$$V_r = V_m + V_s$$

- V_m = masonry shear resistance (diagonal tension)
- Ductile RM shear walls: 25% and 50% reduction in V_m value for Moderately Ductile and Ductile walls respectively
- Conventional Construction RM walls: no $V_{\rm m}$ reduction

Sliding Shear Resistance

- May govern in low-rise buildings due to low axial compression level
- Sliding shear resistance V_r determined based on the Coulomb's Law

$$V_r = \phi_m \mu C \qquad \qquad C = P_d + T_y$$

- Vertical component C depends on self-weight P_d and shear friction resistance T_y provided by vertical reinforcing bars yielding in tension
- Frictional coefficient (μ) values prescribed by CSA S304

T_y <-> all vertical reinforcing bars Conventional Construction and Moderately Ductile (same as non-seismic provision)

 T_y <-> only reinforcing bars in tension Ductile Shear Walls

Sliding Shear Displacements?

- Approaches for estimating sliding displacements not currently available in design codes
- Sliding Shear Behavior (SSB) Method developed by Jose Centeno
- Three different sliding mechanisms (2 for reinforced masonry and one for unreinforced masonry)
- The objective is to estimate sliding displacement at the base ($\Delta_{\rm base})$ due to sliding shear resistance $V_{\rm SS}$

 $V_{SS} = Fr_A + Fr_{Fl} + DA_y$

 $\label{eq:Fr} \begin{array}{l} Fr_A: \mbox{Fr}_A \mbox{ in the to Axial Compression} \\ Fr_{Fl}: \mbox{Friction due to Flexure-Compression} \\ DA_y: \mbox{Dowel Action Yield Resistance} \end{array}$

```
Jose Centeno, UBC (2015)
```


Sliding behaviour at displacement $2\Delta_y$ H/L = 1.0, P/A_gf'_m = 0%, ρ_v = 0.18% Experimental study by Hernandez (2012)

Sliding Shear Behavior (SSB) Method: Flowchart

32

Ductility Check

Intended to verify whether ductility capacity of a RM shear wall is in line with the assumed wall class (R_d value)

Alternatives:

- Simplified check: if neutral axis depth-to-wall length ratio (c/l_w) is within the prescribed limits
- 2) Detailed: required to find inelastic strain ϵ_i , curvature ϕ , and rotation θ

Simplified Ductility Check c/l_w ratio obtained from the M_r calculation

Source: Brzev and Anderson (2018)

34

Detailed Ductility Check

Inelastic rotational demand θ_{id}

Inelastic rotational capacity θ_{ic}

- Requirement: inelastic rotational capacity θ_{ic} must exceed the rotational demand θ_{id} due to seismic excitation
- θ_p=(Φ_u-Φ_y)l_p
 Similar to ductility check for reinforced concrete shear walls according to CSA A23.3-04

Wall Height/Thickness Ratio: Restrictions (not applicable to "Conventional Construction")

- Intended to prevent instability (buckling) of compression zone in ductile RM shear walls under in-plane seismic loading
- h/t limit ranges from 12 to 20 (with exceptions)

3. SEISMIC BEHAVIOUR OF DUCTILE RM SHEAR WALLS: FINDINGS OF SELECTED RESEARCH STUDIES

UBC Research Program on Seismic Behaviour of Ductile RM Shear Walls

Funded by the NSERC CRD and masonry industry (2011-2018) PI: Ken Elwood Co-PI: Svetlana Brzev

- Phase 1: Testing of 5 full-scale uniaxial specimens simulating wall end zone under reversed cyclic loading (Nazli Azimikor, MASc 2012)
- Phase 2: Testing of 8 full-scale wall specimens under reversed cyclic loading (Brook Robazza MASc and PhD, 2019)

UBC Research Program: Specimens

Phase 2 Specimens: Geometry and Reinforcement Details

W5

Observed Seismic Failure Mechanisms for RM Shear Walls

Primary failure mechanisms:

- Ductile-Flexure
- Shear-Flexure

Secondary failure mechanisms:

- Sliding
 - Toe-Crushing
 - Bar-Buckling
 - Bar Fracture
 - Rocking/Bond-Slip
- Lateral Instability

Robazza et al. (2020)

Secondary Failure Mechanisms

Progressive Damage of a Ductile RM Shear Wall

Primary and Secondary Failure Mechanisms: Examples

Legend:

- DF = Ductile Flexure
- TC = Toe-Crushing
- SL = Sliding
- RO = Rocking/Bond-Slip
- BF = Bar-Fracture

Specimen W3, Robazza (UBC)

Failure Mechanisms and Lateral Drifts

BF = Bar-Fracture DF = Ductile Flexure LI = Lateral Instability RO = Rocking/Bond-Slip SF = Shear-Flexure SL = Sliding TC = Toe-Crushing

Robazza et al. (2020)

Performance of Ductile RM Shear Walls at Different

Onset of yielding: 0.18% Drift Minor damage (hairline cracks)

Drift Levels

Damage at 1.11% Drift NBC permits 1% drift for post-disaster buildings

Damage at the end of test: 3.9% Drift NBC permits 2.5% drift for regular buildings

Toe Crushing Failure Mechanism (TC)

- Caused by the flexural behaviour
- Characterized by damage within the wall's toe region
- Initially, the damage is in the form of cracking, but ultimately spalling of face shells takes place, which causes a significant damage and decrease of the compression zone

Toe Crushing -> Face Shell Spalling

Wall end zone (specimen W2)

Masonry prism testing *face shell spalling at failure*

Detailing of Horizontal Reinforcement (Hooks)

180 degree hooks required only for Ductile walls (R_d=3.0) 90 degree hooks permitted for other wall classes

Horizontal Reinforcement with 180^o Hooks: Good Performance at High Seismic Demands

Lateral Instability Mechanism (LI)

Phase 1 specimens: h/t=27 Azimikor (2012)

Phase 2: specimen W2 h/t=27 Robazza et al. (2018, 2019)

Axial Deformation (mm)

Azimikor et al. (2017)

4. FUTURE RESEARCH NEEDS

Potential Topics

Some topics that may need to be explored in the context

of current Canadian masonry practice and potential for

future applications:

Limiting seismic damage in ductile RM shear wall configurations via boundary elements

Seismic behaviour of tall RM shear walls

Ductile RM Shear Wall Configurations

- Research on ductile RM shear walls with exterior boundary elements performed in the last 10 years at McMaster and Concordia University.
- The results indicate stable ductile behaviour, high ductility and limited damage, which are advantages of this design solution
- However, exterior boundary elements are visible and may not be attractive to architects

Research on Ductile RM Shear Walls with Exterior Boundary Elements

Damage at the wall end zone @2.2% drift

Research Topic: Ductile RM Shear Walls with Integrated Boundary Elements

Integrated Boundary Elements

Research at the initial stage at UBC

- Possible in combination with thicker walls (25 cm or 30 cm thickness)
- Challenges associated with confinement/ties within the blocks, both in terms of anchorage (hooks) and tie spacing

Research Topic: Seismic Behaviour of Tall RM Shear Walls

- Limited experimental evidence on RM shear walls with higher height/length (H/L) aspect ratios
- Limited experimental evidence on the effect of high axial precompression and overturning moments (moment gradients) characteristic for tall buildings
- Influence of wall-to-floor interaction also needs to be studied

Shaking table testing of a 3-storey full-size RM building at UC San Diego, USA (Shing, Klingner, Stavridis, et al. 2011)

Shaking Table Testing of a 3-storey Full-size RM Building

TEST #14 - 1999 Chi-Chi EQ record at 150% (PGA = 1.5 g) UC San Diego (Shing, Klingner, Stavridis, et al. 2011)

Future Research: Hybrid Simulation of a Masonry Building

System-level testing of tall RM (TRM) walls using hybrid simulation

A 5-year research project Seismic Behaviour of Tall Reinforced Masonry Shear Walls sponsored by an NSERC Alliance grant started in 2021 at UBC PI: Prof. Tony Yang Co-PI: Svetlana Brzev

References

- 1. Aly,N. and Galal,K. (2020). In-plane cyclic response of high-rise reinforced concrete masonry structural walls with boundary elements. https://doi.org/10.1016/j.engstruct.2020.110771
- 2. Azimikor, N., Brzev, S., Elwood, K., Anderson, D.L., and McEwen, W. (2017). Out-Of-Plane Instability of Reinforced Masonry Uniaxial Specimens Under Reversed Cyclic Axial Loading. Canadian Journal of Civil Engineering, Vol. 44: 367–376
- 3. Brzev, S. and Anderson, D.L. (2018). Seismic Design Guide for Masonry Buildings. Second Edition, Canadian Concrete Masonry Producers Association, Toronto, Ontario, Canada (www.ccmpa.ca)
- 4. Centeno, J. (2015). Sliding Displacements in Reinforced Masonry Walls Subjected to In-Plane Lateral Loads, a Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy, University of British Columbia, Vancouver, BC, Canada.
- Robazza, B.R., Brzev, S., Yang, T.Y. et al. (2020). Seismic behaviour and design code provisions for predicting the capacity of ductile slender reinforced masonry shear walls, Engineering Structures, 190, 389-409, https://doi.org/10.1016/j.engstruct.2020.110992
- 6. Robazza, B.R., Yang, T.Y., Brzev, S. et al. (2019). Response of Slender Reinforced Masonry Shear Walls with Flanged Boundary Elements under In-Plane Lateral Loading: An Experimental Study, Engineering Structures, 190, 389-409.
- Robazza,B.R., Brzev,S., Yang,T.Y., Elwood, K.J., Anderson, D.L., and McEwen,W. (2018). Seismic Behaviour of Slender Reinforced Masonry Shear Walls under In-Plane Loading: An Experimental Investigation. Journal of Structural Engineering, ASCE, 144(3): 04018008.
- 8. Hsu, Y.C., Yang, T.Y., and Brzev, S. (2021). Seismic Behaviour of Tall Reinforced Masonry Buildings. Proceedings, 14th Canadian Masonry Symposium, Montreal, Canada.

Thank you!

Questions?

