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ABSTRACT: The authors of this paper have recently proposed a nonlinear static method for asymmetric 
structures, which is alternative to that stipulated by seismic codes. According to this method, the 
maximum dynamic displacements of the deck can be enveloped by two pushover analyses performed 
applying the lateral force with two different eccentricities with respect to the centre of mass of the deck. 
These eccentricities, named corrective eccentricities, are defined so that the two corresponding pushover 
analyses provide displacements that are equal to those evaluated by nonlinear dynamic analysis at the 
two sides of the deck. In the past, analytical equations have been proposed to evaluate the corrective 
eccentricities based on the response of single-story systems constituted by a rigid deck supported by 
vertical uni-directional resisting elements. These elements provide lateral stiffness and strength in their 
plane only and are representative of shear-walls or braced frames, while they are not effective in 
simulating the inelastic response of columns of framed structures. In fact, columns provide lateral stiffness 
and strength in all the horizontal directions and are characterised by a bi-axial yield domain. In this paper, 
new analytical equations for the corrective eccentricities are calibrated by asymmetric single-storey 
systems with bi-directional resisting elements. 

1. Introduction 

Nowadays, it is widely recognised that a proper seismic assessment of structures requires to compare the 
displacement capacity, i.e. the displacements and plastic deformations that the structure can undergo 
before the achievement of a given limit state, to the displacement demand, i.e. the displacements and 
plastic deformations caused by the seismic excitation. The most reliable tool for the estimation of seismic 
demand is the nonlinear dynamic analysis. Unfortunately, the difficulties in correctly modelling the 
nonlinear cyclic behaviour of structural members and in properly simulating the seismic excitation make 
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this kind of analysis accessible only to a few experts of seismic engineering. The need for a tool that 
explicitly considers the inelastic deformation experienced by the structural members during earthquakes 
without carrying out complex and computational costly nonlinear dynamic analyses led researchers to 
develop the nonlinear static methods of analysis (Bosco et al., 2009; Fajfar and Gaspersic, 1996; Fajfar, 
1999; Freeman, 1998). The use of these methods is already allowed by current seismic codes (for 
instance CEN EN 1998, 2004). Unfortunately, nonlinear static methods are not very effective in the 
evaluation of the seismic response of three-dimensional structures because they do not provide a reliable 
estimate of the deck rotations (Chopra and Goel, 2004; Fajfar et al., 2005; Marušić and Fajfar, 2005). 

The authors of this paper have recently proposed a nonlinear static approach for asymmetric structures 
(Bosco et al., 2012) which is alternative to that stipulated by seismic codes and will be named hereinafter 
corrective eccentricity method. According to this approach, the nonlinear static analysis is performed 
twice, applying the lateral forces with two different eccentricities with respect to the centre of mass. These 
eccentricities, named corrective eccentricities, were calibrated by a parametrical study on single-storey 
systems. These systems were subjected to bidirectional ground motions so that the two corresponding 
nonlinear static analyses provide displacements that are equal to those evaluated by nonlinear dynamic 
analysis at the two sides of the deck. The analysed single-storey systems were constituted by a rigid 
deck, where the mass is lumped, supported by vertical resisting elements with lateral stiffness and 
strength in their plane only (uni-directional resisting elements). 

Single-storey models are widely adopted to investigate the torsional behaviour of buildings (Bosco et al., 
2012). In fact, these systems represent the extreme schematization of a real building and, although they 
do not cover some peculiarities related to the heightwise distribution of structural properties 
(Anagnostopoulos et al., 2010; De Stefano et al., 2013, De Stefano et al. 2014; Ghersi et al., 2007), they 
are able to describe the main aspects of the torsional seismic behaviour of actual asymmetric buildings 
which are regular in elevation (Fujii, 2014; Palermo et al., 2013; Peruš and Fajfar, 2005). However, the 
single-storey models with uni-directional resisting elements adopted by Bosco et al. (2012) may be 
considered representative of multi-storey buildings in which seismic forces are sustained by braced frames or 
shear walls. Instead, these models are less effective in simulating the response of r.c. and steel framed 
structures (Bosco et al., 2015). The vertical resisting elements of these structures, i.e. the columns, provide 
lateral stiffness and strength in all the horizontal directions and are characterised by a bi-axial yield domain 
such that the presence of bi-axial bending reduces their strength capacity (interaction phenomena). These 
aspects are neglected when using uni-directional resisting elements. 

Based on the above considerations, in this paper the corrective eccentricities are re-determined for a set of 
single-storey systems with resisting elements that provide lateral stiffness and strength in all the 
horizontal directions and possess a bi-axial yield domain (bi-directional resisting elements). The results of 
the numerical investigation are used to define new equations, which provide the values of the corrective 
eccentricities as functions of the structural parameters that control the seismic response of asymmetric 
single-storey systems. These parameters are the rigidity eccentricity er (distance between the centre of 
rigidity CR and the centre of mass CM), the ratio Ωθ of the torsional to lateral frequencies of the 
corresponding torsionally balanced system (obtained by shifting CM into CR), the strength eccentricity es 
(distance between the centre of strength CS and CM) and the ratio Rμ of the elastic strength demand to the 
actual strength of the system. Finally, the effectiveness of the proposed equations is demonstrated 
showing that they lead to an estimate of the maximum dynamic displacements significantly better than 
that obtained by a single pushover analysis performed applying the seismic force to the mass centre of 
the deck, as stipulated in seismic codes. 

2. Corrective eccentricities 

The corrective eccentricity method is based on the observation that the distribution of the maximum 
dynamic displacements of the deck is nonlinear (because such displacements are reached in different 
times) and generally cannot be approximated adequately by a nonlinear static analysis which, being the 
deck rigid, always provides a linear distribution of displacements. Thus, the maximum dynamic 
displacements of the asymmetric single-storey system subjected to ground motions is estimated by two 
pushover analyses. For each pushover analysis the point of application of the seismic force F is shifted 
from CM by a corrective eccentricity ei. The two corrective eccentricities are defined so that the two 
pushover analyses provide exactly the maximum dynamic displacements of the two sides of the deck. 
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Figure 1.compares the in-plan distribution of the maximum horizontal displacements determined by 
nonlinear dynamic analysis to those obtained by the two pushover analyses. Note that the use of a 
conventional displacement spectrum in nonlinear static method of analysis for estimating the 
displacement demand usually provides errors even for symmetric systems (Bosco et al., 2009). In order 
to avoid this, each pushover analysis is stopped when the displacement of the centre of mass of the 
asymmetric system equals the value of the maximum displacement provided by the nonlinear dynamic 
analysis of the corresponding planar system (i.e. of the system obtained by restraining the deck rotation 
of the asymmetric system). For the intermediate points of the deck, the envelope of the displacements 
obtained by the two pushover analyses provides a conservative estimate of displacements if the dynamic 
displacement of the centre of mass of the asymmetric system is smaller than that of the corresponding 
planar system (Fig. 1a and Fig. 1b), otherwise it can be slightly unconservative for some points (Fig. 1c). 

2.1. Determination of corrective eccentricities 

Pushover and nonlinear dynamic analyses are carried out to determine the corrective eccentricities for 
the evaluation of the dynamic response of asymmetric systems. The numerical investigation is conducted 
on a wide set of mono-symmetric single-storey systems with bi-directional resisting elements. For both 
pushover and nonlinear dynamic analyses, an elastic-perfectly plastic constitutive relation following the 
normality rule is adopted for the resisting elements, and interaction phenomena arising in the nonlinear 
range of behaviour are accounted for by means of an elliptical yield domain. A Rayleigh viscous damping 
is used for nonlinear dynamic analysis and set at 5% for the first and the third mode of vibration. The 
dynamic response is evaluated by step-by-step integration of the equations of motion by the Newmark 

method with parameters  and  set at 0.25 and 0.5, respectively. Bi-directional ground motions are used 
for nonlinear dynamic analysis while the seismic force applied for pushover analysis is orthogonal to the 
axis of symmetry of the system. A computer program developed by the authors is used to perform all the 
numerical analyses. 

2.2. Structural systems 

The deck of all the analysed systems is rectangular in plan and have dimensions, denoted as B and L in 
Fig. 2, equal to 12.5 m and 29.5 m, respectively. The mass of the deck m is equal to 1416 t, while the 
mass radius of gyration rm about the centre of mass CM is equal to 0.312 L. 

The considered systems have values of Ωθ which range from 0.8 to 1.2 in steps of 0.05. These values of 
Ωθ are representative of actual framed structures, which generally range from moderately torsionally 
flexible (Ωθ = 0.8) to moderately torsionally stiff systems (Ωθ = 1.2). For each value of Ωθ several values of 
er, from -0.1 L to 0 in steps of 0.025 L, are considered to include both systems with small and large rigidity 
eccentricity. The analysed systems are characterised by ratios Rμ from 2.0 to 6.0 in steps of 1.0. This 
range of Rμ include systems that experience moderate or large inelastic deformations. In fact, systems 
that behave almost elastically during the earthquake may be adequately assessed by linear methods of 
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analysis and, therefore, are out of the scope of this paper. Finally, for each value of Rμ, values of es, from 
-0.1 L to 0.1 L in steps of 0.025 L, are considered. 

The position and the mechanical properties of the resisting elements are derived from the systems with 
uni-directional resisting elements analysed by Bosco et al. (2012). In these systems (Fig. 3), the resisting 
elements are arranged along the axes of the assumed reference system. The contribution γx of the 
resisting elements arranged along the x-axis to the total torsional stiffness of the system about the centre 
of rigidity CR is equal to 20%. The total lateral stiffnesses of the resisting elements arranged along the x- 
and y- directions are determined so that the periods of the corresponding planar system in the x- and y-
direction are equal to 1 s. Then, the stiffnesses are distributed among the resisting elements arranged 
along the x- and y-direction (Kxi, Kyi) to obtain the prefixed values of Ωθ. Symmetry is maintained with 
respect to the x-axis. Structural systems with prefixed values of er are generated by modifying the position 
of CM. The total lateral strengths in the x- and y-direction are assigned so as to have pre-fixed values of 
the ratio Rμ of the corresponding planar system. Then, the lateral strength is distributed among the 
resisting elements in order to have the assigned values of the strength eccentricity es. Furthermore, in 
order to consider the influence of the strength distribution on the inelastic seismic response of the 
systems, ten random distributions of strength Sxi, Syi are generated for each value of es. Further details 
may be found in Bosco et al. (2012). The (bi-directional) resisting elements of the analysed systems 
(Fig. 2a) are located at the intersection of the axes of the resisting elements of the systems analysed by 
Bosco et al. The components along the x- and y-directions of the lateral stiffness (kxi,j, kyi,j) and strength 
(sxi,j, syi,j) of the bi-directional resisting element located at the intersection of the corresponding i-th and j-th 
uni-directional elements are obtained by the relations: 
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Fig. 2 – Analysed single-storey systems: (a) Plan layout of the systems; (b) bi-axial yield 
domain of the resisting elements 
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where yn = 8 and xn = 4 are the number of resisting elements arranged along the y- or x-direction in the 

systems with uni-directional resisting elements. 

2.3. Numerical analyses 

The response of each single-storey asymmetric system to a set of artificial accelerograms is first 
determined by nonlinear dynamic analysis. The set of ground motions is constituted by ten pairs of 
artificial accelerograms, generated by the SIMQKE computer program (1976), and is compatible with the 
EC8 elastic spectrum for soil type C and characterised by 5% damping ratio and peak ground 
acceleration ag equal to 0.35 g. The displacement demand along the y-direction of the points of the deck 
is the mean value of the 10 maximum displacements obtained for the 10 pairs of ground motions. 
Afterwards, pushover analysis of the system is conducted several times considering different positions of 
the point of application of the seismic force CF. The seismic force is applied along the y-direction. The 
pushover analysis is always stopped when the displacement of the centre of mass of the asymmetric 
system is equal to the average of 10 maximum displacements of the corresponding planar system 
evaluated by nonlinear dynamic analysis. Consistently with the nonlinear static analysis, when the 
corresponding planar system is considered, ground motions are considered along the y-direction. The 
position of CF is defined by its eccentricity e with respect to CM. The eccentricities that provide 
displacements at the first (left) and the second (right) sides of the deck which are equal to those 
determined by nonlinear dynamic analysis are the corrective eccentricities e1 and e2, respectively. Their 
values are searched in the range from -0.25 L to 0.25 L by the bisection method. Note that if e1 is larger 
than e2, the displacements obtained by the envelope of the results of the two pushover analyses are 
always conservative. In this case, each corrective eccentricity between e2 and e1 is suitable for the 
estimation of the deck displacements by pushover analysis. For given values of er, es, Ωθ and Rμ the COV 

 Eccentricities determined by numerical analyses Eccentricities determined by the proposed linear functions 
 

   

   

Fig. 4  – Corrective eccentricities for side 1 (stiff side) as a function of er and es 
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of the values of the corrective eccentricities found for the ten strength distributions considered is very 
small; as a consequence, the average of these values is assumed as the corrective eccentricity. 

3. Analytical formulation of corrective eccentricities 

Corrective eccentricities e1 and e2 are represented as a function of er and es for the considered values of 
Ωθ and Rμ. In Fig. 4 the grey surfaces provide the corrective eccentricities for side 1 (stiff side) of systems 
with Ωθ = 0.8, 1.0 and 1.2 and Rμ = 2.0 and 6.0. When e1 is smaller than e2, the corrective eccentricity 
represented in Fig. 4 is the same for both sides and is conventionally taken as the mean value of e1 and 
e2. The obtained surfaces have a regular trend, similar to planes, and depend on Ωθ and Rμ. Hence, the 
surfaces describing the corrective eccentricities are approximated by linear functions of er and es. This 
consideration is also valid for the Ωθ-Rμ pairs which are not shown in Fig. 4 and for side 2. The 
coefficients that define these functions are first determined for each Ωθ-Rμ pair. Then, the obtained values 

of each coefficient are interpolated by analytical functions of Ωθ and R. 

3.1. Linearization of corrective eccentricity surfaces 

The corrective eccentricities e1 and e2 have to be equal to zero if er = es = 0. In fact, a system with 
er = es = 0 is torsionally balanced and does not need any corrective eccentricity. Based on these 
considerations the function for the determination of the corrective eccentricity ei may be written as follows 

risii ebeae   with i = 1 or 2 (3) 

where the coefficients ai and bi depend on Ωθ and R. These coefficients are determined for all the 

considered pairs of Ωθ and R by minimizing the standard deviation of the differences between the 
corrective eccentricities provided by Eq. (3) and those obtained by the numerical investigation. When e2 is 
smaller than e1, if the corrective eccentricity calculated by Eq. (3) is between e2 and e1, the scatter is 
conventionally assumed null because, as shown in Section 2, each value of corrective eccentricity 
between e2 and e1 is suitable. Instead, if the value of the corrective eccentricity provided by Eq. (3) falls 
out of the range e2-e1, the scatter considered is the minimum of the scatters between the value of ei 
obtained by Eq. (3) and the values of e1 and e2 determined by the numerical analyses. 

3.2. Equations for the evaluation of corrective eccentricities 

The results of the numerical analyses presented in Section 3.1 are used for the determination of 

analytical equations which express the coefficients ai and bi of Eq. (3) as functions of Ωθ and R.  
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Two equations are determined for the evaluation of the coefficient a1 (first coefficient of Eq. (3) for the 

corrective eccentricity of side 1). The first equation, which is a linear function of R, is valid for R ≤ 3, 

while the second equation is independent of R and applies for R > 3. Furthermore, the two equations 
relate a1 to Ωθ by the coefficients ma1, ta1 and ka1. In order to determine the two equations, the obtained 

values of a1 are plotted for different values of Ωθ as a function of R (Fig. 5a). Then, for each Ωθ, the 

values of a1 are fitted by the linear function of Eq. (4a) for R ≤ 3 and by the constant function of Eq. (4a) 

for R > 3. For R = 3, the two unknown functions have to be coincident. This conditions relates ka1 to ma1 
and ta1 in Eq. (4a). Instead, the coefficients ma1 and ta1 are calibrated for each value of Ωθ by minimizing 
the standard deviation of the differences between the values of a1 provided by the proposed equations 
and those obtained by the numerical investigation presented in Section 3.1. The obtained values of ma1 
and ta1 are plotted as functions of Ωθ (Fig. 5b) and fitted by linear functions. The procedure provides Eq. 
(4a). The same procedure applies for the determination of Eqs. (4b), (4c) and (4d), which provide the 
coefficients b1, a2 and b2. However, in these cases, the procedure is simpler because the values 
numerically determined of each of the coefficients b1, a2 and b2 are approximated by one equation. The 
procedure is similar to that adopted in (Bosco et al., 2012). 

The planes for the estimate of e1 in systems with Ωθ = 0.8, 1.0 and 1.2 and R = 2 and 6.0 are 
superimposed in Fig. 4 (white surfaces) to those obtained by the numerical investigation (grey surfaces). 
The comparison between the grey and white surfaces shows that the values of corrective eccentricities 
estimated by Eq. (3) are always close to those obtained by the numerical investigation. Similar results are 
obtained for the cases not shown in Fig. 4 and for the corrective eccentricity e2. 

4. Validation of the proposed equations 

The use of corrective eccentricities is proposed by the authors to improve the prediction of the maximum 
dynamic displacements of asymmetric single-storey systems subjected to seismic excitation that could be 
obtained by the application of nonlinear static method according to current seismic codes (for instance 
EC8, 2004). Hence, the benefit that may be obtained by the proposed method is evidenced comparing 
the error committed for the displacements of the two sides of the deck when the nonlinear static method 
is applied with or without the corrective eccentricities provided by Eqs. (4a), (4b), (4c) and (4d). 

The error is evaluated as the percentage difference between the displacements estimated by the 
nonlinear static method and the actual maximum displacements determined by nonlinear dynamic 
analysis. This error is assumed negative when the prediction provided by the nonlinear static method is 

unconservative. Errors Err1 obtained for the side 1 of the systems with Ωθ = 0.8, 1.0 and 1.2 and R = 2 
and 6.0 are plotted in Fig. 6 as a function of er and es. It is notable that, when the nonlinear static method 
is applied without corrective eccentricities, a reliable estimate of the displacement of side 1 is never 
obtained. The largest errors are committed for systems with Ωθ = 0.8 and 1.0 that experience large 

inelastic deformations (R = 6) independently of er; in these cases the prediction of the displacement of 
side 1 may underestimate the real value even of 100% (es = 0.1 L). Instead, when the nonlinear static 
method is adjusted by the corrective eccentricity e1 the prediction is significantly improved and the 
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percentage error is always close to 0; the maximum underestimation of the displacement of side 1, which 

is obtained for the system with Ωθ = 0.8, R = 2, er = 0 and es = -0.1 L, is about 25%. The errors Err2 
committed in the prediction of the displacement of side 2 of the systems with Ωθ = 0.8, 1.0 and 1.2 and 

R = 2 and 6.0 are plotted in Fig. 7. The use of the corrective eccentricity e2 improves the prediction with 
respect to that obtained when the nonlinear static method is applied without corrective eccentricity. 
However, in this case the prediction obtained without corrective eccentricities leads to errors smaller than 
those committed for the displacement of side 1 and are acceptable for some systems (for instance, 

systems with Ωθ = 1.2 and R = 2). 

5. Conclusions 

In this paper a set of analytical equations for the determination of the corrective eccentricities is defined. 
These corrective eccentricities are determined on the basis of a numerical investigation on single-storey 

systems with bi-directional resisting elements characterised by vales of Ωθ ranging from 0.8 to 1.2 and R 
larger than 2. These simplified systems are representative of framed structures that experience moderate or 
large inelastic deformations. The reliability of the proposed equations is demonstrated by the comparison of 
the percentage errors committed when the nonlinear static method is applied with and without the 
proposed corrective eccentricities. The use of the nonlinear static method according to the formulation 
stipulated by seismic codes often leads to significant underestimation of the displacement of the stiff side 
of the deck (up to 100% in some cases), while the proposed method provides errors which are definitely 
smaller in all the analysed cases. The prediction of the displacement of the flexible side obtained by the 
nonlinear static method without corrective eccentricities is better than that obtained for the stiff side. 
However, the use of the eccentricity method improves significantly this prediction and leads to errors which 
are close to zero. In order to generalise the obtained results, systems characterised by different values of 
periods should be investigated. Finally, it should be noted that single-storey systems are very simplified 
numerical model and neglect important features of actual buildings. Therefore, the effectiveness of the 
corrective eccentricities determined in this paper should be investigated by more realistic multi-storey models. 
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Fig. 6  – Error on the estimation of maximum displacement of side 1 (stiff side) 
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