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ABSTRACT: The traditional approach is to reduce elastic shear force demands using the same force 
reduction factor used to reduce bending moment demands accounting for flexural ductility. The 2004 
edition of CSA A23.3 required that the magnification of shear due to inelastic effects of higher modes be 
accounted for; but gave no guidance and designers ignored the requirement. The commentary stated that 
no suitable simple method was available; but it is expected that a solution will soon be available. This 
paper summarizes the research that led to the implementation of a simple procedure to account for the 
magnification of shear due to inelastic effects of higher modes in the 2014 edition of CSA A23.3. While 
US designers of high-rise shear wall buildings that use nonlinear response history analysis (NLRHA) 
typically use an amplification factor of 3.0, the amplification factor in CSA A23.3-2014 is limited to 1.5. 
This was done because concrete shear walls have consider shear ductility, the maximum shear force 
demand only occurs in one short cycle and the shear demand in all other cycles is considerably less, and 
the maximum shear force does not occur simultaneously with the maximum base rotation, while the 
calculation of shear resistance assumes that it does. 

 

1. Introduction 
One of the greatest challenges in the design of high-rise concrete shear wall buildings is accounting for 
the shear force demands due to higher modes. The traditional design approach is to reduce the shear 
force demands determined from a linear dynamic (response spectrum) analysis (RSA) using the same 
force reduction factor that is used to reduce the bending moment demands accounting for flexural 
ductility. It has been known for a long time that the shear force demands do not reduce proportionally to 
the maximum bending moment at the base of taller buildings because the maximum bending moment is 
primarily due to the first mode while the shear force has large contributions from the higher modes.  

Designers of high-rise shear wall buildings in the US that use nonlinear dynamic analysis (performance-
based design) are designing for shear forces that are 2 to 3 times larger than the shear forces determined 
using the traditional approach. Many high-rise buildings in both Canada and the US continue to be 
designed for the lower shear force demands using the traditional approach.  
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The 2014 edition of CSA A23.3 contains new design requirements for the shear force demands in high-
rise concrete shear wall buildings accounting for higher modes. The increase in shear force from the 
traditional approach, i.e., the shear force reduced proportional to bending moment, is limited to 1.5, which 
is about half the increase described above. This paper presents the background to the new requirements 
and the justification for the lower increase in shear force demand. 

2. Some Important Background Literature 
Considerable research has previously been done and continues to be done on this topic. The following is 
a brief summary of some important background literature. The first work to recognize the shear 
amplification problem was Blakely et al (1975), who demonstrated through nonlinear analyses that shear 
demands in cantilever shear walls were larger than calculated by a code static analysis.  They observed 
that the amplification increased with the height of the structure and with the level of seismic input.  Using 
their work, the following equations were included in the 1982 New Zealand Design Standard (NZS, 1982), 
and was included as reference information in the commentary to the 1994 version of CSA A23.3 (CSA, 
1994): 

𝜔𝑠 = 0.9 + 𝑁
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where ωs is the amplification from a static analysis, and N is the number of storeys.  Note that there is an 
amplification for all story heights above one (N = 1) and the amplification is constant above 15 stories (N 
= 15). 

Many modern approaches attempt to represent the shear amplification in terms of the linear elastic 
modes.  Eibl and Keinztel (1988) and Keintzel (1992) proposed a model where yielding due to the forces 
in the first mode reduced the shear force in that mode only, based on observations that the shape of the 
other modes and their forces remained similar to the elastic modes after base yielding.  Using this 
concept, Eurocode 8 adopted the following equation: 
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where ωv is the amplification factor to be applied to a response spectrum analysis (RSA), My is the base 
yield moment, q is the ductility factor, MI is the base moment from an RSA, Sa,max is the maximum spectral 
acceleration, Sa(T1) is the spectral acceleration of the first period, and γ is a correction factor normally 
equal to 1.0. 

Despite the theoretical background, the equation by Eibl and Keintzel (1988) does not explicitly consider 
the forces from the modes.  Priestly and Amaris (2003) attempted to use the forces from the modal 
analysis directly: 

𝑉𝑎 = �𝑉𝑦12 + 𝑉𝑒22 + 𝑉𝑒32 + ⋯ (3) 

where Va is the amplified shear, Vei is the elastic shear from the ith mode, and Vy1 is the shear associated 
with yielding in a first mode distribution.  Other work by Sullivan et al (2006) has attempted to use the 
modes modified by yielding directly in the formulation of their shear amplification models. 

Recently, Pugh (2012) has proposed a modification to the modal method.  While most methods assume 
that only the first mode forces cause the yielding and should be reduced, Pugh (2012) showed that this 
assumption overestimates the amplification for taller structures, and proposed a method where only the 
shear from the mode that contributes the most to the demand is reduced by the ductility factor.  He 
showed that this method agreed well with results from an extensive series of nonlinear analyses. 

Most of the methods proposed for calculating the shear force demands in high-rise shear wall buildings 
include three main parameters: the height of the building (or the first-mode period), the ductility force-
reduction factor used to reduce the bending moment and shear force determined from a linear analysis, 
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and the shape of the design spectrum.  Rutenberg (2013) recently presented a comprehensive summary 
of other models that have been proposed. 

Most of the methods described above appear very similar; but do produce very different results. Figure 1 
compares the results from these different methods using the Vancouver design spectrum in the 2010 
NBCC (NRC 2010). The results are expressed in terms of an amplification factor, which is the ratio of the 
correct design shear force at the base of the wall to the traditionally calculated shear force. The latter is 
equal to the shear determined from a linear dynamic analysis divided by the same flexural ductility factor 
used to reduce the bending moment. Figure 1 was developed assuming a flexural cantilever of uniform 
mass and stiffness, with a fundamental period equal to the number of storeys divided by ten.  

 
Fig. 1 – Comparison of results from four different methods for determining shear amplification factor for 
case where elastic shear force demand has been reduced using a ductility force-reduction factor of 3.5. 

3. Mechanics of the Problem 
The shear amplification phenomenon is typically thought to be the result of inelastic action of higher 
modes.   A physical explanation for these inelastic modes is described briefly in this section.  The main 
issue is the shear force demand being reduced from the elastic demand by the same force reduction 
factor as the bending moment. This is common practice, despite it being well known that the contributions 
to the shear and the moment between modes do not vary in the same ratio.  Once the moment causing 
yielding is established, it is simple to come up with a realistic combination of modes that causes shear 
forces larger than the design shear force.  This “elastic shear amplification” will be observed later from the 
nonlinear time history results.  Both elastic and inelastic amplification are present. 

As described initially in Keinztel (1992), the “inelastic higher modes” can be thought of as the elastic 
modes when a pin is placed at the base of the cantilever wall.  The first mode becomes a mechanism, but 
the higher modes still cause shear forces over the height of the structure.  This is shown in Figure 2. 
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Fig. 2 – Mode shapes and shear force envelopes for fixed-based and pinned-based cantilevers. 

4. Nonlinear Response History Analysis 
Nonlinear response history analysis (NLRHA) was used to study the shear demand in thirteen different 
cantilever shear wall buildings. The main parameters were height of building and strength of shear walls, 
which may be defined by the parameter Rg = the ratio of elastic bending moment demand at the base of 
the walls calculated using the uncracked flexural stiffness EIg to the nominal flexural strength Mn. The 
study included three 10-story buildings with Rg = 1.7, 2.6, and 4.2; one 20-story building with Rg = 4.0; 
four 30-story buildings with Rg = 1.4, 2.4, 3.1, and 4.3; one 40-story wall with Rg = 4.4; and four 50-story 
walls with Rg = 1.4, 2.1, 2.4, and 4.1. The thirteen buildings were designed according to the requirements 
of CSA A23.3-04. The amount of vertical reinforcement at the zones was determined considering the 
level of axial compression force due to gravity loads and the target Rg. The full description of the shear 
walls can be found in Dezhdar (2012). 

The input ground motions in this study were scaled to the uniform hazard spectrum (UHS) for Vancouver 
BC for site class C. 80 ground motions with moment magnitude between 6.5 and 8.0 and closet source to 
site distance between 0.5 and 50 km were included. A comprehensive study was carried out to 
investigate the influence of ground motion selection and scaling on various demand parameters (Dezhdar 
and Adebar, 2015). Time history results presented in this study correspond to the ground motions that 
were matched to the target UHS over a range of periods wider than 0.2T1 to 1.5 T1, where T1 is equal to 
1.0, 2.0, 3.0, 4.0, and 5.0 seconds for 10, 20, 30, 40, and 50 story shear walls, respectively. 

The nonlinear response history analysis of the 13 shear walls was done using OpenSees (2008) with a 
specially developed trilinear hysteretic bending moment - curvature relationship. Details of the hysteretic 
model can be found in Dezhdar (2012). The parameters that define the trilinear model were calculated at 
each floor considering the variation of axial compression. A force element was defined at each floor level 
to model the vertical spread of plasticity in the walls. A fixed base was assumed, and shear deformations 
were not considered in the model. Rayleigh damping was assumed with mass proportional and initial 
stiffness matrixes. A damping ratio of 3% was assigned for the first and third modes. 

Figure 3 summarizes the results of the NLRHA in terms of a shear amplification factor, which is the 
amount the design shear force (reduced from an elastic analysis) needs to be increased again. An 
effective stiffness of 0.5EIg was used to compute the elastic bending moment and shear force demands. 
To obtain design shear forces, elastic shear forces were reduced by the ratio of elastic bending moment 
at the base corresponding to 0.5EIg to wall flexural strength Mn. 
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Fig. 3 – Shear amplification factors determined from NLRHA of thirteen shear wall buildings. 

 

5. Reasons for Lower-bound Shear Amplification Factor 
5.1. Shear Cracking and Shear Ductility 
Most nonlinear response history analysis (NLRHA) uses a simple linear model for the shear response. 
This very primitive model does not capture some of the important nonlinear shear behaviour.  

Rad and Adebar (2008) showed that reduced shear stiffness due to diagonal cracking reduced the 
maximum shear force at the base of the wall. For R = 5, a reduction in shear rigidity to 20%, 10% and 5% 
of Gc Av reduced the maximum shear force at the base to 87%, 73% and 55% of the shear force 
determined using the uncracked section shear rigidity.  

Using a nonlinear shear model (Gerin and Adebar, 2009), Rad (2009) investigated whether providing a 
lower shear capacity than indicated by linear analysis would result in a shear failure. The results from one 
example are shown in Fig. 4 for a cantilever wall designed using a force-reduction factor of 3.5 for both 
the bending moments and the shear forces. The maximum shear strains observed in the wall for different 
ground motions are shown as the ordinate in Fig. 4. When the shear strength factor was 1.0, i.e., a shear 
amplification factor of 1.0 used to design the wall, the maximum shear strains exceeded the acceptable 
limit of 0.007 (shown as solid line in Fig. 4); however when the wall was designed using a shear strength 
(amplification) factor of 1.5, net shear force reduction factor of 3.5/1.5 = 2.3, all shear strains were within 
the acceptable limit. This demonstrates that the wall does not have to be designed for the elastic shear 
demands as the wall can tolerate some yielding of horizontal reinforcement in the wall. 

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Sh
ea

r a
m

pl
ifi

ca
tio

n 
fa

ct
or

Force reduction factor R (0.5EIg)

10 story

20 story

30 story

40 story

50 story



Page 6 of 9 

 
Fig. 4 – Influence of shear strength (amplification) factor used to design the horizontal reinforcement on 

the maximum shear strains; from Rad (2009). 

5.2. Maximum Shear Force Demands in Cycles 
When NLRHA is used to determine the shear force demand, the single largest shear force peak that 
occurs during one load cycle is used. It is important to note that all other peak shear force demands will 
be smaller. The question is how much smaller. 

The peak shear force demands from all cycles were determined for 10, 30, and 50 story shear wall 
buildings with force reduction factors of 3.2, 3.1, and 3.7, respectively. For each ground motion, peak 
base shear force at various cycles was normalized to the maximum base shear force over the entire 
ground motion, and a curve was determined that related the normalized base shear force to the number 
of cycles. For a given number of cycles, the mean value for a suite of ground motions shows how much 
the base shear force drops compared to the maximum value.   

Figure 5 shows the mean plots (from many ground motions) for the three buildings. Of course the cycles 
generally do not occur in the order of the shear force demand, and Fig. 5 merely shows the mean ratio of 
maximum base shear force at the nth biggest cycle to the maximum base shear force. Figure 5 indicates 
that after 5 cycles, the base shear force drops to 80% of the maximum value for the 10 and 30-story 
buildings and to 73% of the maximum value for the 50-story building (see dashed line). If there is no 
shear failure in the cycles with maximum base shear force, the mean base shear demand reduces by 
20% or 27% after only 5 cycles and continues to reduce further for additional cycles. 
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Fig. 5 – Reduction in shear force demands in other cycles. 

5.3. Shear – Wall Rotation Interaction 
The final issue that justifies using a lower-bound shear force demand is that the CSA A23.3 requirements 
for seismic shear (Adebar, 2006) assume the maximum wall rotation and curvature demands associated 
with the maximum displacement demands will occur at the same time as the maximum shear force 
demand. The results from the NLRHA (Dezhdar, 2012) was used to investigate this issue.  

Figure 6 below compares the interaction of wall curvatures and shear force. The results are shown for 
individual ground motions, as well as the mean result and the mean plus one standard deviation result. 
The plots in Fig. 6 show that there is a strong interaction – the maximum shear forces and maximum 
curvatures do not occur at the same time. 

  
Fig. 6 – Interaction between base curvature and base shear force in: 10-story shear wall building (left); 

30-story shear wall building (right). 
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6. 2014 CSA A23.3 Requirements 
The 2004 edition of CSA A23.3 required that shear walls have a factored shear resistance greater than 
the shear due to the effects of factored loads accounting for the magnification of the shear due to the 
inelastic effects of higher modes (Clause 21.6.9.1); however, no guidance was provided on how this 
requirement can be satisfied. The commentary to Clause 21.6.9.1 stated: “unfortunately, no simplified 
method is available at this time to account for the magnification of shear due to inelastic effects of higher 
modes by simply modifying the results of a linear analysis. It is hoped (expected) that such a simplified 
solution will be available soon.” Most designers ignored this requirement because they did not know how 
to satisfy it. 

Based on the results presented in this paper, the 2014 edition of CSA A23.3 contains the following new 
clause: 

21.5.2.2.7 Accounting for inelastic effects of higher modes 

Except for coupled and partially coupled shear walls, the factored shear force, increased to account for 
flexural overstrength, shall be further increased depending on the fundamental lateral period of vibration 
of the building Ta in the direction under consideration as follows:  

Ta ≤ TL Ta ≥ TU 

1.0 𝟏.𝟎 + 𝟎.𝟐𝟐�𝑹𝒅𝑹𝒐 𝜸𝒘� − 𝟏� ≤ 𝟏.𝟓 ;  ≥ 𝟏.𝟎 

For Ta between TL and TU, linear interpolation shall be used. For western Canada, TL = 0.5 s and TU = 1.0 
s. 

Rd and Ro are the ductility-based and overstrength-based force reduction factors specified in the National 
Building Code of Canada. γw is the wall overstrength factor equal to the ratio of the load corresponding to 
nominal moment resistance of the wall system to the factored load on the wall system, but need not be 
taken as less than 1.3. The term ( Rd Ro / γw ) is analogous to the force reduction factor R given in Fig. 3. 

The amplification factor given in the table above reaches the maximum value when Rd Ro / γw = R = 3.0, 
which is consistent with the results shown in Fig. 3; however, the maximum amplification factor is limited 
to 1.5 instead of 2.0 as indicated in Fig. 3. The reasons why the CSA technical committee decided to do 
this was because of the three reasons described in Section 5 above: (i) concrete shear walls have 
consider shear ductility, (ii) the maximum shear force demand determined in a NLRHA only occurs in one 
short cycle and the shear demand in all other cycles is considerably less than the maximum value, and 
(iii) the maximum shear force does not occur simultaneously with the maximum base curvature (rotation), 
while the calculation of shear resistance in CSA A23.3 assumes that it does. 
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