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ABSTRACT:  Sliding of building contents, such as equipment, is of primary concern during an earthquake 
because not only can it contribute to substantial losses due to nonstructural damage, but also pose a 
serious safety risk to building occupants. In this study, dimensional analysis is performed to explore the 
existence of physical similarities in the sliding response of equipment and contents in base-isolated 
buildings. Buckingham’s π-theorem is used to introduce dimensionless π terms and the corresponding 
governing dimensionless equation. In this investigation, pulse-like ground motions are approximated by 
analytical pulses. The contents are idealized as freestanding rigid bodies, free to slide but not rock. The 
mechanical behaviour of the contact surface between the contents and the building floors is described by 
a Stribeck friction model taking into account the transition from static to kinetic friction. The base-isolated 
building is treated as a rigid mass supported on viscously damped linear isolators. The effect of various 
parameters, including isolation nominal period and damping, static friction and its transition to kinetic 
friction, and interaction between the sliding object and the seismically isolated building are investigated. 
The study shows that the peak sliding response of rigid objects exhibits complete similarity in the ratio of 
kinetic to static friction coefficient. Hence, assuming a simple Coulomb friction model with a single friction 
coefficient parameter is adequate when peak sliding displacement is the main concern; although 
presence of static friction does change the response history and permanent displacement. Moreover, it is 
observed that as the damping increases, the response exhibits complete similarity in the ratio of isolation 
frequency to pulse frequency. The study concludes that certain combinations of the isolation system 
design parameters can result in amplification in the peak sliding response of contents, compared to the 
fixed-base building. 

1. Introduction 
The resilience of a wide range of buildings housing important nonstructural components and systems 
(NCS), also referred to as Operational and Functional Components (OFC), is highly correlated to the 
seismic performance of these NCS. For critical facilities, such as hospitals, emergency operations 
centers, and power plants, continued functionality during and after a seismic event is of utmost 
importance. While the most rigorous performance level, i.e., immediate occupancy, is usually targeted in 
the design process of such critical buildings, this does not necessarily guarantee acceptable performance 
of the NCS. From the economic point of view, neglecting NCS is imprudent. Their value in a typical 
commercial building dwarfs the cost of the structure itself, often accounting for 80 to 90% of the total 
value of a building (Taghavi and Miranda, 2003). In view of this and the fact that nonstructural damage 
typically occurs at lower levels of shaking intensity than structural damage, it is expected that a significant 
portion of economic losses resulting from a major seismic event will be attributed to nonstructural damage 
(Comerio, 2005).  

A typical building houses a very wide collection of NCS. In this study, we focus on building Equipment 
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and Contents (EC) for which sliding is the only mode of response. Sliding is very common for 
freestanding (i.e., unrestrained) EC, particularly those that are stocky and have a relatively low friction 
coefficient. Although seismic restraints are typically recommended to prevent sliding of EC, such 
restraints can be costly. For example, in UC Berkeley buildings where the dominant use is laboratories, 
the cost of seismic restraining of the EC could range from US$8 to $12 million (Comerio and Stallmeyer, 
2002). Besides cost, there are also practical limitations associated with restraining EC. Some EC items 
need to remain mobile (Dar et al., 2015). Another problem associated with restrained EC is that they can 
exhibit significantly larger accelerations compared to freestanding EC (Konstantinidis and Makris, 2005).  

The hazard associated with freestanding sliding EC can stem from one or combination of: (a) excessive 
sliding displacement, regardless of velocity and acceleration, that can result in the EC falling off the edge 
of its support surface, or, in the case of large heavy EC, blocking an evacuation path or doorway; (b) 
impact due to large sliding displacement and velocity that can put the safety of the people working in the 
vicinity of the EC or the functionality of the EC at risk; and (c) large accelerations, particularly in the high 
frequency range, that can cause resonance and damage to the electronic parts of EC. Therefore, 
desirable characteristics of earthquake protection systems for EC include the ability to decrease floor 
acceleration, sliding velocity, and sliding displacement together with shifting the floor vibration frequency 
to frequencies lower than the content resonance frequency. Seismic isolation appears to be an ideal 
solution for protecting a building’s EC since it aims to control all of the aforementioned parameters. While 
this claim has been made three decades ago (Kelly and Tsai, 1985), the supporting research for 
unattached EC is fairly new. Nikfar and Konstantinidis (2013) studied the performance of sliding EC in 
isolated buildings under broad-band and pulse-like ground motions. Sliding fragility curves for broad-band 
ground motions are presented in (Konstantinidis and Nikfar, 2015). As shown in the parametric studies 
presented in (Nikfar and Konstantinidis, 2013), the dynamic response of sliding EC under pulse-like 
ground motions is considerably different than broad-band ground motions.  

In this study, dimensional analysis is performed to explore the existence of physical similarities in the 
sliding response of EC in base-isolated buildings under pulse type excitations. Buckingham’s π-theorem 
is used to introduce dimensionless π-terms and the corresponding governing dimensionless equation. 
The Stribeck friction model that takes into account the velocity dependence of friction is assumed to 
describe the contact interface between the EC and their base. The effect of various parameters on the 
sliding response of EC is investigated, including the ratio of the isolation to pulse period, isolation 
damping, ratio of static to kinetic friction, parameters associated with velocity-dependent friction, and 
interaction between sliding contents and isolated building. 

2. Model of Structure and EC 
A seismically isolated building and its sliding EC can be mathematically described by the three degree-of-
freedom (DOF) dynamic system shown in Figure 1-a. In this model, su is the displacement of the EC 
relative to the floor (i.e., the sliding displacement), 1u  represents horizontal displacement (deformation) of 
the isolation layer, and 2u  horizontal displacement of the story relative to the ground. The horizontal 
displacement of the ground is gu . For simplicity, the vertical component of ground motion is neglected in 
this study. stm  represents the mass of the superstructure. The base isolation system consists of a base 
floor of mass bm  on a viscously damped linear elastic isolation system, i.e., a viscoelastic system. This 
model was used early on to introduce the linear theory of seismic isolation (Kelly, 1997) and continues to 
be used widely, primarily due to its simplicity. The numerical efficiency of this linear model lends itself to 
large parametric investigations (Yang et al., 2010). The model consists of a linear spring of stiffness bk  in 
parallel with a linear viscous damper of damping coefficient bc . Using this model, the nominal period bT  
and damping ratio bξ  of the isolated system are given by (Kelly, 1997) 

2π ,
2 ( )

b
b b

st b

b stb b
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T

k k m m
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= =
+

                                                                                                     (0) 

The definition for the nominal fundamental period and damping ratio of the isolated structure, given by 
Equation 0, are based on the premise that in a seismically isolated building, the superstructure moves as 
a nearly rigid body on a very flexible base. In reality, the fundamental period of the system is slightly 
larger than the nominal period. If assuming a base isolated building like the one shown in Figure 1-a, it is 
reasonable to treat the superstructure as a rigid structure supported on a very flexible base, thus reducing 
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Figure 1 – (a) Linear seismic isolation model. (b) SDOF representation of the seismic isolation 
model (assuming a very stiff superstructure relativ e to the isolation layer). 

the base isolated structure to a single degree of freedom system (Konstantinidis and Nikfar, 2015) as 
shown in Figure 1-b. Treating the base isolated building as a SDOF system reduces the number of 
variables involved in the dimensional analysis by two and simplifies the interpretations of the effect of 
each parameter on the response of the system. 

A rigid block of mass ECm  on an isolated base is considered to represent the EC, as Figure 1-b. The 
contact friction is defined using a Stribeck friction model that takes into account the rate dependence of 
friction as illustrated in Figure 2. A Stribeck friction model that can take into account both static, sµ , and 
kinetic, kµ , friction coefficients and the transition between the two expressed by a hyperbolic secant 
function, as suggested in (Xia, 2003), as well as viscosity at the contact, can be expressed by  

( )( ) sech( ) 1 sech( ) 1 in this study
n

s s s k s n su u u u nµ µ β µ β γ= + − + =, ( , )ɺ ɺ ɺ ɺ
 
                (1) 

In this equation, suɺ represents sliding velocity; constant β  defines the transition sharpness from static to 
kinetic friction; and γ represents viscous characteristics of the contact. The first two terms of Equation 1 
account for the smooth transition from static to kinetic friction. The larger β , the sharper the transition, as 
shown in Figure 2. Kinetic friction itself is defined as a velocity-dependent parameter. The last term of 
Equation 1, n

n suγ ɺ , captures any nonlinear viscous velocity dependence of friction, known as viscous 
contact. This definition is well explained in mechanical engineering literature, specifically for friction 
between lubricated surfaces. However, velocity dependence of kinetic friction is not limited to lubricated 
surfaces and has been observed in dry friction experiments as well. Depending on the surface 
characteristics, the actual behaviour may be approximated by a linear or nonlinear function, n

n suγ ɺ . For 
simplicity, n  is assumed to be equal to unity in Equation 1, representing linear viscous damping for the 
contact. The friction force for the sliding block under horizontal excitation is defined by 

( ) sgn( )f s EC sF u m g uµ= ɺ ɺ   (1) 

in which sgn(·) represents signum function. The dynamic equation of motion of the system including the 
sliding EC, superstructure, and isolation system is constructed in state- space form and solved using 

 
Figure 2 – Stribeck friction model 

Sliding EC

Superstructure
      (k

st
,c
st
)

Base-Isolation
    (k

b
,c
b
)

u
g

u
1

u
2

Sliding EC

u
s

u
s

m
st

m
b

M
b
=m

st
+m

b u
g

u
1

m
EC

m
EC

µ(u
s
)

.

µ(u
s
)

.

u̇s

 

 

µ
(u̇

s
)

β = 25
β = 50
β = 100
β = 1000

µk

µs

γ

(a) (b) 



Page 4 of 10 

MATLAB ODE solver. A bilinear model with very large initial stiffness is assumed to approximate the 
signum function of Equation 1. The procedure to solve such dynamic systems with path-dependent 
nonlinearities, i.e., bilinear hysteresis restoring forces, is explained in detail by the authors in (Nikfar and 
Konstantinidis, 2014). 

3. Dimensional Analysis 

3.1. Introduction 
Dimensional analysis is employed to reveal the underlying physics in the sliding of EC in seismically 
isolated buildings as well as to demonstrate the complete- and self-similarities in the response of the 
system. Analytical pulses are used since dimensional analysis requires a time scale and a length scale of 
the ground excitation. To demonstrate the concept of the length scale of a pulse excitation, assume a 
rigid sliding block of mass m  on the ground that is subjected to a rectangular horizontal acceleration 
pulse as shown in Figure 3-a. Provided that a Coulomb friction force resists the sliding of this rigid block, 
the early solution for rigid-plastic system presented by (Newmark, 1965) describes the maximum sliding 
displacement of the block (Figure 3-b) as 

 (1     ,    
2

)p

2
p p p

max a g
a T a

u
g

µ
µ

 
= − >

 
                 (2) 

Equation 2 shows that maxu  is proportional to the so-called characteristic length scale of the excitation,
2

p p pL a T= , and the intensity of the pulse which is presented by the terms within the parenthesis in Eq. 2. 
The characteristic length scale represents the persistence of the excitation in displacing the object 
(Vassiliou and Makris, 2011). As it is shown in Figure 3-c, after expiration of this pulse, the ground moves 
with constant velocity, eventually resulting in infinite ground displacement. However, such a pulse is not 
physically realizable. In order for a pulse to generate finite displacement, the area under the acceleration 
time-history must be zero (i.e., zero mean acceleration); in other words, the final velocity must be zero. In 
addition to that, the energy released by earthquake shaking is always finite. 

 

 
Figure 3 – (a) Rigid sliding block subjected to a h orizontal ground excitation. (b) Rectangular 

ground acceleration pulse with amplitude pa  and duration pT . (c) Ground velocity.  

This means that the area under the square of the pulse must be finite. Because of the aforementioned 
conditions, wavelets are commonly utilized for the characterization of different pulses in actual ground 
motions. A wavelet is a waveform (signal), ( )tϕ , in time domain that satisfies the finite energy and zero 
mean conditions, 

2
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In Figure 4, the long-period pulse of the RSS228 motion recorded during 1994 Northridge earthquake is 
approximated using the symmetric Ricker wavelet with effective period of 1 spT = . The symmetric Ricker 
wavelet is basically the second derivative of the Gaussian distribution,

2 2te− , described by (Vassiliou and 
Makris, 2012) 
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where 2p pT π ω=  is the period corresponding to the peak Fourier spectrum of the wavelet. Analytical 
pulse excitations such as Ricker wavelet, if being consistent to the coherent pulse, can approximately 
simulate the kinematics of pulse-like ground motions that are known as one of the most destructive class 
of ground motions to most civil structures (Bertero et al., 1978; Somerville and Graves, 1993; Hall et al., 
1995). The capability of the closed-form analytical pulses to simulate real ground motions for studying 
structural response has been investigated at various scales (Veletsos et al., 1965; Hall et al., 1995; 
Makris, 1997; Mavroeidis and Papageorgiou, 2003; Makris and Black, 2004) among others. Various 
analytical two- and four- parameter pulses have been proposed. The Ricker wavelet is used in the 
demonstrations of the dimensionless master curves in this study.  

 

Figure 4 – (a) Ground acceleration and velocity tim e histories of the 1994 Northridge earthquake 
recorded at Rinaldi Receiving Station together with  the symmetric Ricker wavelet with effective 

period of 1 s matched to the long-period pulse.   

3.2. Dimensional analysis of the sliding objects on  viscoelastic base 
Referring to the model presented by Figure 1-b and based on Equation 1, the maximum sliding 
displacement of EC on a viscoelastic base, as a dependent variable, under an excitation with coherent 
pulse acceleration amplitude 

pa  and period 
pT is expected to be a function of ten independent variables 

(for each pulse type) 

max ( shape of pulse)p p b b b EC s ku f a T M T mξ µ µ β γ= , , , , , , , , , ,   (4) 

where 2b b bT M kπ= . In Equation 4, the eleven variables, having dimensions max [ ]u L≐ , -2[ ][ ]pa L T≐ , 
[ ]pT T≐ , [ ]bT T≐ , [ ]bM M≐ , [ ]ECm M≐ , [ ]bξ ⋅≐ , [ ]sµ ⋅≐  , [ ]kµ ⋅≐ , 1[ ] [ ]L Tβ −

≐  and 1[ ] [ ]L Tγ −
≐ , involve 

all three reference dimensions, that of mass [ ]M , length [ ]L  and time [ ]T . Based on Buckingham’s π-
theorem the number of independent dimensionless π-terms is equal to the number of variables in 
Equation 4 (eleven variables) minus the number of reference dimensions (three) leading to eight 
dimensionless π-products. Repeated variables should contain the parameters representing the pulse 
characteristics, i.e., pa and pT , together with 

bM . Consequently, the dimensionless π-products 
considered are 

1 2 3 4 5 6 7 82
k b k EC

b p p p p
p P s bp p

u g T m
a T a T

a T Ma T

µ µξ β γ
µ

Π = Π = Π = Π = Π = Π = Π = Π =max , , , , , , ,   (5) 

Therefore, the resultant dimensionless equation takes the form 

1 2 3 4 5 6 7 8( , , , , , , ,shapeof pulse)Π = Φ Π Π Π Π Π Π Π                        (6) 

where Φ  is the function that can be obtained either analytically, if a closed-form solution exists, or 
numerically, for each pulse type. Reduction in the number of variables by three results in self-similar 
solutions for Equation 6 with respect to the repeated variables chosen. In other words, the dimensionless 
solutions will be the same for all the values of pa , pT and 

bM . By expressing the behaviour in terms of 
dimensionless products, the effects of different parameters on the response can be examined.  

3.2.1. Effect of the isolation period ( 3 b PT TΠ = ) 

3Π is the measure of the relative stiffness of the isolation system. Small values of 3Π (e.g., 3 0 01Π < . ) 
represents no isolation, while large values represent a large degree of isolation. Figure 5 (left) plots the 
so-called dimensionless master curves for various 3Π values, while other π-terms are fixed. These curves 
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are presented for 10% isolation damping ( 4 0 1bξΠ = = . ). The term master curve refers to the self-similar 
curves with respect to the repeating variables that in this study are pa , pT and 

bM . The presented curves 
are the same for all possible combinations of values of these three parameters. In this context, the 
vertical axis, 2

1 p pu a TΠ = max , represents the dimensionless displacement, and the horizontal axis, 

2 k pg aµΠ = , represents the dimensionless frictional resistance. Each of 5 1k sµ µΠ = =  or 6 0 0Π = .  in 
these plots eliminates the static phase of friction and therefore denotes the case with Coulomb friction 
model. Note that 1000 s/m is the maximum value for β  used in this study, representing a sudden drop 
from static to kinetic friction coefficient. Dynamic interaction between the sliding object and the isolation 
system is avoided by considering a mass ratio as small as 5

8 10EC bm M −Π = = . Considering the 3 0 01Π = .
curve to represent a very stiff isolation system, or effectively a fixed-base system, we notice that seismic 
isolation does not necessarily decrease the maximum sliding demand for all the values of isolation period 
and friction. The amplification happens specifically for low friction coefficient values, while generally the 
demand drops compared to the stiff system by increasing the friction coefficient. The highest amplification 
is associated with the resonance condition, where the isolation period is very close to the pulse period. 
Moreover, the effect of the isolation damping in displacement reduction is evident in the resonance 
condition ( 3 1 0Π = . ), while it has marginal effect for non-resonance cases.      

3.2.2. Effect of the isolation damping ( 4 bξΠ = ) 

Figure 5 (right) demonstrates the effect of isolation damping under the resonance condition, 3 1 0Π = . , on 
the sliding of EC. Providing a minimum amount of damping, i.e., 10%, considerably reduces the sliding 
response. However, the efficiency drops rapidly for damping values grater that 15%. 

3.2.3. Effect of the ratio of kinetic to static friction coefficient ( 5 k sµ µΠ = ) 

5Π  represents the ratio of kinetic to static friction coefficient. 5 1Π =  indicates Coulomb friction model 
(where s kµ µ= ), while values lower than unity describe Stribeck friction that itself subsumes the 
Static+Coulomb friction model when 6Π → ∞ (e.g., β → ∞ ), leading to a sudden drop from static to 
kinetic friction. The practical range of 5Π  changes based on the properties of the problem being 
investigated. For instance, experimental tests on light science laboratory equipment items (Chaudhuri and 
Hutchinson, 2005) showed 5Π  to range between 0.73 and 1.0, while tests on heavy laboratory equipment 
(Konstantinidis and Makris, 2005; Konstantinidis and Makris, 2009) measured 5Π  to range between 0.72 
and 0.77. Based on those observations, a lower bound value of 5 0 5Π = .  is assumed in this study. The 
dimensionless curves (master curves) demonstrating the effect of 5Π  on the maximum sliding response 
are presented in Figure 6 for three different isolation-to-pulse period ratios and 10% isolation damping. 
The dimensionless curves are obtained for 1000 s/mβ = (e.g., 4 1000 p pa TΠ = ). Presence of static friction 
reduces the maximum sliding response for large values of 2Π , while it results in amplification for low 
values of 2Π . Therefore, neglecting the static phase of friction, as being done when using the Coulomb 
friction model, is unconservative when estimating the maximum sliding displacement of contents with low 
friction.  

 

Figure 5 – Dimensionless solutions to demonstrate t he effect of isolation period ratio 3 b PT TΠ =  
(left) and isolation damping 4 bξΠ =  (right). 
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This finding may be one of the reasons explaining why the Coulomb friction model underestimated the 
actual sliding displacements of the heavy laboratory equipment in experimental tests (Konstantinidis and 
Makris, 2005; Konstantinidis and Makris, 2009). Observations like this highlight the profound advantage 
of dimensional analysis, which can be used to study the behaviour of a complicated problem by 
condensing a number of curves in only one master curve. Otherwise, a comprehensive parametric study 
would be necessary to arrive at such a conclusion. The amplification under the symmetric Ricker wavelet 
excitation is attributed to the resistance of the system with high static friction to the first pulse of the Ricker 
wavelet which results in one directional sliding under the major pulse of the excitation. In other words, for 

5 1Π = , sliding of the EC under the first minor pulse of the Ricker excitation in the negative direction 
cancels out a portion of the sliding in positive direction under the major pulse of the Ricker wavelet, 
resulting in smaller maximum sliding displacement. Therefore, even though presence of a static friction 
increases the overall strength (resistance) of the system, it may result in amplification effects due to the 
presence of preceding or succeeding pulses close to the major pulse in real earthquake excitations. Such 
sensitivity in sliding response calls for more accurate estimations of the kinematics of pulse-like ground 
motions, when analytical pulses are to be used. Moreover, as can be seen in Figure 6, there is a similarity 
in maximum sliding response in the range of sliding equipment tested previously ( 50 7 1 0≤ Π ≤. . ). 
Consequently, one may assume that 1Π  is almost independent of 5Π  (and consequently 6Π )

 
in that 

range and simplify the dimensionless sliding equation to:  

1 2 3 4 7 8 5

1 2 3 4 5 6 7 8 5

( , , , , ) for 0.7 1.0

( , , , , , , )    for     0.7

f

f

Π ≈ Π Π Π Π Π ≤ Π ≤
Π ≈ Π Π Π Π Π Π Π Π ≤

   (7) 

3.2.4. Effect of transition sharpness ( 6 p pa TβΠ = ) and viscous contact parameter ( 7 p pa TγΠ = ) 

The effect of the transition parameter 6Π  on the sliding response is examined by computing the 
dimensionless curves for 610 1000p p p pa T a T≤ Π ≤ . The master curves are presented in Figure 7 (left). The 
curves are close to each other in the range of interest for this parameter. Consequently, since changing 

6Π  by two orders of magnitude results in relatively comparable master curves, it can be said that the 
dimensionless sliding response, 1Π , exhibits complete similarity in 6Π . Hence, the simplified 
dimensionless maximum sliding equation described by Equation 7 becomes 

1 2 3 4 7 8 5

1 2 3 4 5 7 8 5

( , , , , ) for 0.7 1.0

( , , , , , )    for     0.7

f

f

Π ≈ Π Π Π Π Π ≤ Π ≤
Π ≈ Π Π Π Π Π Π Π ≤

   (8) 

If assuming no viscous damping at the contact, i.e. 7 0Π → ,  and neglecting the dynamic interaction 
between the content and isolation system by assuming a very small mass for the EC, i.e. 8 0Π → , the 
dimensionless sliding displacement, 1Π , for a massless rigid sliding block is approximately a function of 
only 2Π  in the range observed for sliding EC, i.e., 30.7 1.0≤ Π ≤ . Here, the dimensional analysis proved 
the dominant role of kinetic friction on the maximum sliding response in its general form, which has been 
observed in previous investigations (Newmark, 1965; Konstantinidis and Makris, 2005; Chaudhuri and 
Hutchinson, 2005; Hutchinson and Chaudhuri, 2006; Konstantinidis and Makris, 2009; Konstantinidis and 
Makris, 2010). Only a handful of experiments are available for evaluating the velocity dependence of 

 
Figure 6 – Effect of kinetic-to-static friction coe fficient ratio 5 k sµ µΠ = .  
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Figure 7 – Left: Effect of the transition between s tatic and kinetic friction,  6 p pa TβΠ = . Right: Effect 
of viscous property of the contact,  7 p pa TγΠ = . 

friction in earthquake engineering. One such study (Konstantinidis et al., 2008) included cyclic testing of 
sliding bridge bearings, which on average exhibited a maximum γ value of about 0.05. In the dimensional 
analysis of the current study, the upper bound for 7Π  is determined by assuming max 0.1s mγ = , 

(max) 2pa g= , and p(max) 5 sT = , resulting in 5 10Π ≈(max) . Figure 7 (right) illustrates how 7Π
 
affects the sliding 

response of EC; the higher the contact damping, the lower the sliding response. 

3.2.5. Effect of the dynamic interaction between the structure and the EC ( 8 EC bm MΠ = ) 

Depending on their friction coefficient and mass, building EC may influence the dynamic response of the 
building. Heavy EC with high friction coefficient move rigidly with their base, leading to a longer isolation 
period. EC with low friction coefficient, which are more prone to sliding, may increase the damping of the 
system by dissipating energy through friction. 

Figure 8 shows the effect of the mass ratio on the maximum sliding displacement for isolation periods 
lower, equal, and larger than the pulse period. For the case where 3 0 1b PT TΠ = = . (left plot) and the mass 
of the EC is equal to the isolation mass, the dimensionless sliding displacement parameter, 1Π , 
decreases for low 2Π , due to the added energy dissipation through friction, and increases for large 2Π . 
Figure 8 shows that the maximum sliding displacement is not affected by the mass of the EC, even up to 
a mass ratio of 10%. Hence, the practicing engineer concerned with the maximum sliding of contents may 
neglect the dynamic interactions if the mass of the sliding contents is less than 10% of the isolation mass.  

 

Figure 8  – Effect of the mass ratio 8 EC bm MΠ =  on the maximum sliding response.  

4. Conclusions  
This study presents the results of a comprehensive parametric investigation on the sliding response of 
equipment and contents (EC) in seismically isolated buildings subjected to pulse excitations through the 
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• Under pulse excitations, amplification occurs in the peak sliding displacement of EC with increasing 
isolation-to-pulse period ratio, 3 b PT TΠ = , specifically for low 2 k pg aµΠ = / (i.e., low friction 
coefficient values or large acceleration pulse amplitudes). The highest amplification is associated 
with the resonance condition, where isolation period is very close to the pulse period. For 3 1Π > , the 
dimensionless sliding displacement parameter decreases with increasing 3 b PT TΠ = , demonstrating 
the decoupling effect associated with isolation. 

• Even a relatively small amount of isolation damping, say 10%, is very effective in reducing the sliding 
displacements under the resonance condition ( 3 1 0Π = . ), while damping has marginal effect for non-
resonance cases. 

• Presence of static friction reduces the maximum sliding response for large 2 k pg aµΠ = / , while it 
results in some amplification in the response for low 2 k pg aµΠ = / . Therefore, neglecting the static 
phase of friction is not always conservative when estimating the maximum sliding displacement of 
EC with low friction. However, in the range of static-to-kinetic friction ratio of sliding equipment tested 
previously ( 50 7 1 0≤ Π ≤. . ),the maximum sliding response exhibits similarity. Master curves also 
show that the dimensionless displacement exhibits complete similarity in the transition parameter β. 

• The dynamic interaction of EC and the isolated base slab is negligible even up to 

8 0 1EC bm MΠ = =/ . .  Hence, the practicing engineer concerned with the peak sliding of EC may 
neglect this dynamic interaction if the sliding contents constitute less than 10% of the isolation mass. 
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