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ABSTRACT: Modern seismic design has enabled engineers to design structures to avoid collapse and 
save lives, but repairs afterwards can be expensive and time-consuming. Therefore, the focus of seismic 
design is moving beyond collapse prevention to also control structural damage. With this additional 
objective, the concept of a self-centering system that returns to its original position after a major 
earthquake is becoming more appealing. A self-centering system can be described in terms of the initial 
period, the linear limit, the energy dissipation parameter, and the stiffness in the nonlinear range. 
Therefore, studying the influence of these parameters on the seismic response of a generalized single-
degree-of-freedom (SDOF) system gives insight into the design and analysis of many different self-
centering systems. Previous research on self-centering SDOF systems has been limited to systems with 
a relatively high strength and no significant   effect. In this study, the influence of different parameters is 
explored by considering 2,688,000 nonlinear dynamic analyses of self-centering SDOF systems. 
Increasing the period or reducing the linear limit generally increases the peak displacements. However, 
changes to the linear limit are less significant when the linear limit is already low. Reducing the energy 
dissipation also increases the peak displacements. The stiffness in the nonlinear range is relatively 
unimportant when it is positive, but it becomes increasingly important when it becomes negative. 

1. Introduction 
The main objective of seismic design is to prevent collapse and allow safe evacuation after a rare large 
earthquake. To achieve this goal, structural systems have traditionally been designed to ensure that 
certain elements dissipate energy through inelastic deformation. This methodology has proved to be 
effective in recent major earthquakes [e.g. Kam et al. 2010, Clifton et al. 2011]. However, even if people 
survived, the buildings were often so damaged that reoccupancy was not possible without expensive and 
time-consuming repair, and sometimes even demolition and reconstruction were needed [e.g. The New 
Zealand Herald 2012]. The need for reconstruction is related to the structures’ residual deformation [e.g. 
Iwata et al. 2005, McCormick et al. 2008].  

Because of the ongoing effort to control residual deformations, self-centering structures are attracting 
increasing attention. A self-centering system usually depends on a gap opening mechanism to limit 
earthquake-induced forces, and it will return to its original position because of its self-weight and 
prestressing. This self-centering principle can be applied to precast concrete frame rocking joints [e.g. 
Priestley and MacRae, 1996], unbonded post-tensioned precast concrete frames [e.g. Roh and Reinhorn, 
2010] and walls [e.g. Kurama et al. 1999], steel moment frame connections (Fig. 1(a)) [e.g. Christopoulos 
et al. 2002] and controlled rocking steel braced frames (Fig. 1(b)) [e.g. Wiebe et al. 2013]. As these 
systems can limit seismic forces without structural damage, there is not normally a limit on ductility 
capacity, but only deformation capacity. 
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While these systems have different mechanisms, the cyclic behaviour of each can be described as a flag-
shaped hysteresis, as shown in Fig. 1(c). If a self-centering structure is to be designed, this flag-shaped 
hysteresis must be fully defined to achieve a certain performance target (e.g. lateral displacement). Thus, 
it is important to study the seismic response of generalized SDOF self-centering systems.  

Previous studies [Christopoulos et al. 2002, Seo and Sause, 2005] have explored the influence of the 
parameters that define a flag-shaped hysteresis on ductility demands and showed that by adjusting the 
energy dissipation and nonlinear stiffness, self-centering systems can achieve similar ductility demands 
as traditional systems with elastoplastic hysteresis. In these studies, Christopoulos et al. (2002) implicitly 
considered force reduction factors R  in the range of 4.5 8.5  and Seo and Sause (2005) used values of 

2 6 . However, recent studies [Wiebe and Christopoulos, 2014] have suggested that a larger value of 
R  can be used while still achieving reasonable displacement limits. On the other hand, none of these 
studies have considered the effect of a negative nonlinear stiffness caused by significant P   effects.  

This paper extends previous studies to also consider large force reduction factors and negative nonlinear 
stiffnesses. After defining the relevant parameters and the ground motions used, the results are 
presented to show the influence of different parameters.  

2. Definition of Parameters 
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Fig. 1 – a) Self-centering moment resisting frame; (b) controlled rocking steel braced frame;        
(c) flag-shaped hysteresis 

As shown in Fig. 1(c), the behaviour of any self-centering system can be idealized by four parameters: 

initial stiffness 0k , linear limit yf , nonlinear stiffness 0k , and energy dissipation parameter  . In this 

study, the initial stiffness will be defined by its relation to the natural period: 
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The nonlinear stiffness will be defined in terms of a tangent period: 
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0
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For traditional elastoplastic systems, both the initial stiffness and the nonlinear stiffness are determined 
by the structural stiffness distributions, so it is appropriate to define the nonlinear stiffness using   as a 
fraction of the initial stiffness [e.g. Miranda, 2000]. The first studies on self-centering systems adopted this 
convention [e.g. Christopoulos et al. 2002, Seo and Sause, 2005]. However, for self-centering systems, 
after the gap opens, the nonlinear stiffness is determined by the post-tensioning and is nearly 
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independent of the initial stiffness [e.g. Wiebe and Christopoulos, 2014]. When designing a self-centering 

system, the post-tensioning (or 0k ) is normally selected before all structural members have been 

defined, so the initial stiffness is unknown. Therefore tanT  is easier to control during initial design than  . 

Another advantage of this definition is that it separates the nonlinear stiffness completely from the initial 
stiffness, decoupling these two parameters from a research perspective. Note that by this definition the 

tangent period is negative when 0  , and tanT    for systems with zero nonlinear stiffness.  

The range of SDOF parameters considered in this study is summarized in Table 1. All analyses use a 
initial stiffness proportional damping ratio of 5% , a time step of 0.001s , and Newmark’s scheme with 
constant average acceleration.  

Table 1 – Range of SDOF parameters considered. 

Parameter Considered values 

Initial Period 0T  (s)  
0.05~1.0 (increments of 0.05) 

1.0~3.0 (increments of 0.10) 

Tangent Period tanT  (s)  -20, -10, -5, 1, 1.5, 2.0, 3.0, 5.0, 8.0, 
10.0, 20.0,   

Force Reduction Factor R  2, 4, 6, 8, 10, 15, 20, 30, 50, 100 

Energy Dissipation Parameter   0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 

Damping Ratio   5%  (proportional to initial stiffness) 

 

3. Ground Motion Suite 
The input for the nonlinear dynamic analysis in this study comes from the record set #1A that was 
selected in a study for the PEER transportation system research program [Baker et al. 2011]. The records 
used here are the broad band ground motions that represent the dominant hazard in active seismic 
regions with large earthquakes at small distances. They are selected for soil sites where the structural 
vibration period and the distance to active faults are unknown, i.e. period- and site-independent. The 
individual and median elastic response spectra of these records are shown in Fig. 2. 
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Fig. 2 – Elastic response spectra of ground motions considered:  

(a) plot with linear scaling of the axes and (b) plot with log-log scale of the axes 
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4. Results and Discussion 

The median responses of typical self-centering systems with zero nonlinear stiffness ( tanT   ) and 

intermediate energy dissipation ( 40%  ) are shown in Fig. 3, as well as individual values. Like an 

elastic system, the median lateral displacement of a self-centering system generally increases as the 
initial period increases, as indicated in Fig 3(a). Fig. 3(b) shows that the peak displacement also 
increases as the linear limit reduces, but only up to a force reduction factor of about 10R  . These 

trends also hold for larger values of 0T  or  . Just as ground motions’ elastic spectra are highly variable, 

the seismic responses of self-centering systems are also highly scattered. For example, in the case of 

0 1.0sT   in Fig. 3(a), the largest response to an individual record (about 500mm ), is more than ten 

times the smallest (less than 50mm ). 
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Fig. 3 – Displacement affected by (a) initial period and ground motion 

when tan2, , 0.4R T     and (b) linear limit and ground motion 

when 0 tanT 0.3s, , 0.4T      

In the following discussion, the results will be presented in terms of displacement coefficient RC . For 

each ground motion, RC  is defined as the ratio of the peak inelastic displacement of a self-centering 

system to that of an elastic system with the same initial period: 

inelastic
R

elastic

C





                                           (3) 

The displacement ratio is used rather than displacement ductility because it is a more useful parameter 
for a self-centering system. Unlike traditional systems, there is not necessarily any yielding associated 
with the nonlinear response in self-centering systems. Therefore, to express the displacement capacity of 
a self-centering system as a multiple of the displacement associated with the onset of nonlinearity is not 
as meaningful as it is for a traditional yielding system. 

4.1. Influence of Linear Limit 

To investigate the influence of the linear limit, the nonlinear stiffness is fixed as zero ( tanT   ) for 

analyses in this discussion. Then R  is changed for 3 different cases: no hysteretic energy dissipation 
( 0  ), intermediate hysteretic energy dissipation ( 40%  ) and full hysteretic energy dissipation 

( 100%  ).  
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Fig. 4 shows that reducing the linear limit by changing R  from 2 to 6 leads to a significant increase in 
displacement for all levels of hysteretic energy dissipation, and this increase is larger at shorter initial 

periods. For example, when 40%   and R  is increased from 2 to 6, the median RC  value increases 

by 97% , 51%  and 17%  for 0 0.5sT  , 1.0s  and 2.0s  respectively. However, further reduction in the 

linear limit (i.e. increasing R ) has relatively little influence on the displacement. For the case of 

40%   and 0 1sT  , the median RC  value increases only about 30%  when R  is increased from 8 to 

30. For some cases, the response of a system with a lower linear limit (larger R  value) is slightly smaller 
than the response of a system with a higher linear limit (smaller R  value). This phenomenon is the 
subject of ongoing research and is beyond the scope of this paper. 

For traditional systems, a larger R  value is not acceptable because it means significant nonlinear 
responses and large ductility demands on the structure. These large nonlinear responses usually result in 
large residual displacements, which make structural repairs expensive [e.g. Iwata et al. 2005, McCormick 
et al. 2008]. However, for a self-centering system, a larger displacement only means further deformation 
of the post-tensioning and energy dissipation devices, which may not even cause yielding, much less 
failure. Therefore, the results discussed above indicate that a larger R  can be used, as long as the 
displacements are acceptable. 

At very short periods, the effect of R  is even more significant. For the case of 0 0.1sT   and 40%  , 

the median RC  values for 2R   and 4R   are 6.8  and 30.5  respectively, the latter of which is 

approximately a 7%  drift for a 3.5m  one-storey building. Even if this drift is less than the displacement 
capacity of the structure, it far exceeds the code-specified drift limit of 2.5%  [NBCC 2010] and thus 

would not be acceptable. For the case of 0 0.05sT   and 40%  , 38.5RC   even for 2R  . These 

observations suggest that self-centering systems may not be appropriate for extremely stiff buildings. 
Elastic design may be more advisable to avoid residual drifts. 
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Fig. 4 – Influence of linear limit on median responses ( tanT   ) 
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4.2. Influence of Hysteretic Energy Dissipation 

The energy dissipation parameter   quantifies the energy dissipation apart from the assumed inherent 

viscous damping. Fig. 5 shows the effect of   for a system with zero nonlinear stiffness ( tanT   ) and 

high initial stiffness ( tan 0.5sT  ). For all values of R , the displacement generally decreases with 

increasing  . The effect of   on RC  is relatively larger when R  is smaller. For example, increasing   

from 0%  to 100%  reduces RC  by 30%  when 2R  , while this decrease is only 15%  when 50R  . 

For 100R  , the displacement remains approximately constant regardless of  .  
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Fig. 5 – Effect of   on median RC  for 0 0.5sT  , tanT    

Fig. 6 shows that the effect of hysteretic energy dissipation is more significant at very short periods in all 

cases, where a small difference in   causes a noticeable change in RC . However, in the intermediate to 

long period range ( 0 0.5sT  ), the decrease in the median RC  is almost a constant over different initial 

periods when   is increased. For instance, when 8R  , tanT    and s0.3s0.1 0  T , increasing    

from 0%  to 20%  causes RC  to decrease by a consistent factor of about 8% . Also the influence of   

diminishes as the value of   becomes larger. For example, in the case of 8R  , tanT    and 

s0.3s0.1 0  T , increasing   from 0%  to 20%  reduces RC  by about 8% ( RC  decreases by about 

0.14 ) while increasing   from 80%  to 100%  reduces RC  by only about 4%  ( RC  decreases by about 

0.05 ). 

The observation from Fig. 5 that the value of   affects systems with higher linear limit (smaller R  value) 

more than for those with lower linear limit is not valid for all cases. Actually, when R  is increased from 2 
to 8, the influence of   become more significant, but when R  is further increased to 30  or 100 , the 

effect of   becomes negligible, which can be observed by comparing different rows in Fig.6. Fig. 6 also 

shows an interaction between   and tanT . When tanT  is close to 0T , the system is nearly elastic, so   

has almost no influence on the median response. However, this situation is rare in practice because the 
nonlinear period is normally much longer than the initial period. 
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Fig. 6 – Influence of   on median RC  

4.3. Influence of Nonlinear Period 

Fig. 7 shows the influence of nonlinear period for different values of R  and 0T . When the system is 

relatively stiff in the nonlinear range ( tan1s 5sT  ), RC  generally increases with tanT , especially for 

large R  values. For example, in the case of 0 0.5sT   and 40%  , increasing tanT  from 1s  to 5s  

increases RC  by 85%  for 10R  , but only by 9%  for 2R  . This is because the shorter tanT  is, the 

closer 0T  and tanT  become, which means that the system is nearly elastic with 1.0RC  . However, this 

situation where tanT  is close to 0T  is rare in practice. When tanT  becomes longer ( tan8s T   ), the 

influence of tanT  on RC  becomes different. For large values of R  ( 10R  ), RC  remains constant or 

slightly decreases with increasing tanT , while for small values of R  ( 10R  ), RC  tends to increase 
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slightly or remain constant. Thus the tangent period generally does not have much influence when it is a 
practical positive value. 
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Fig. 7 – Influence of tanT  on median RC  

When the nonlinear period is negative and its absolute value is large ( tan 10sT    ), systems with a 

high linear limit (e.g. 2,4R  ) and a short initial period (e.g. 00.2s 1.0sT  ) show similar responses 

as those with positive long nonlinear periods. However, when the nonlinear period becomes shorter 

( tan5 10sT    ) or the linear limit is reduced further ( 10R  ), the system is prone to instability. This 

is seen as a vertical line in Fig. 7, where the median displacement is very large ( 310RC  ). At longer 

initial periods (e.g. 0 2.0sT  ), the system is more sensitive to the negative stiffness. The instability 

occurs because the negative stiffness is large enough to cause the system to enter the second or fourth 
quadrant in the force-displacement relationship while the displacement is still increasing, which means 
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the system become physically unstable. A lower linear limit (larger R  values), a longer initial period 
(lower peak force) or a shorter nonlinear period (steeper drop in nonlinear range) makes this happen 
more readily.  

When instability occurs, increasing   can decrease the displacement before the critical nonlinear period 

is reached, but it cannot prevent the instability. In Fig.7, the appearance that increasing   is more 

effective for long period ( 0 2.0sT  ) is caused only by different scales of the y-axis in different rows. In 

fact, increasing   is more effective at short periods, as discussed in section 4.2. 

5. Conclusions 
This paper has presented a parametric study on the seismic response of self-centering systems. As 
occurs for an elastic system, increasing the initial period or reducing the linear limit generally increases 
the peak displacement, although not as a proportion of the displacements of an elastic system with the 
same initial period. Reducing the linear limit can double the peak displacement when the force reduction 
factor is small, but the peak displacements become less sensitive to the linear limit when the force 
reduction factor is already greater than about 10 . The effect of linear limit is more pronounced at short 
initial periods. Increasing the hysteretic energy dissipation generally reduces the peak displacements up 
to 50%  when comparing the case of maximum self-centering hysteretic energy dissipation to that of no 
hysteretic energy dissipation, but additional energy dissipation is less effective when it is added to a 
system that already has a high level of energy dissipation. Also, the energy dissipation parameter affects 
short period systems ( s5.00 T ) more than long period ones, and it influences systems with intermediate 

linear limits ( 104  R ) more than those with lower and higher linear limits. Finally, as long as the 
nonlinear stiffness stays in practical positive levels, it is relatively unimportant. However, when it becomes 
negative, the response becomes unstable, especially if the linear limit is low, the initial stiffness is small, 
or the nonlinear stiffness is much less than zero. In these situations, collapse becomes likely. Increasing 
hysteretic energy dissipation can only suppress nonlinear response before a critical negative stiffness that 
can cause collapse is reached, but cannot prevent the collapse caused by negative stiffness. 

Further research is ongoing to explain the mechanism behind these phenomena and to develop 
expressions to predict the peak displacements of self-centering SDOF systems. 
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