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1.  FUNDAMENTAL CONCEPTS 

1.1 TYPES OF LOADS 
 
• Structural systems may be subjected to one form or another of dynamic loading during 

their lifetime. 
• Two different approaches are available for evaluating the response of a structure to 

dynamic loads: 
Deterministic 
Nondeterministic 

• Deterministic analysis is used when the time varying characteristics of the prescribed 
dynamic loads are well defined.  Prescribed loads can be divided in two basic categories: 

Periodic 
Nonperiodic 

• Nondeterministic analysis is used when the time variation of the loads is not completely 
known but can be defined in a statistical sense - random dynamic loading. 

 
1.2 BASIC CONCEPTS 
 
• Newton's Second Law 
 

If a force "f" acts on a body which is moving with velocity “v”, the rate of change of the 
quantity of motion of the body (momentum = mv) is equal to the applied force. 

In structural dynamics we deal mostly with systems in which the mass "m" is constant.  
For such systems, 

• Degrees of Freedom 
The number of degrees of freedom in a dynamic system is the least number of 
coordinates needed to define the position of all the particles of mass in the system. 

 
• Mass and Weight 

Mass is a measure of the quantity of matter. 
 

Weight is a measure of the force necessary to impart a specified acceleration to a specific 
mass. 
 
The acceleration of gravity, g, is the acceleration that the gravity of the earth would 
impart to a free-falling body at sea level. 

 
S.I. units: g = 9.807 m/sec2. 
English system: g = 32.174 ft/sec2. 

d(mv)
dt  = f 

f = m 
d(v)
dt  = ma 
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2.  SINGLE-DEGREE-OF-FREEDOM (SDOF) SYSTEMS 

2.1 UNDAMPED SYSTEM 
Consider a single storey building, idealized as an oscillator of mass m, and stiffness k, which 
is moving in the direction of the x-axis as shown in Fig. 2.1.  A single displacement 
coordinate, x(t), describes the position of all the mass in the system. 
 
The oscillation of the system is initiated by displacing the mass and then releasing it, with no 
further external force being applied.  In this case the mass oscillates back and forth forever 
since there is no frictional damping to decrease the amplitude of vibration. 
 
The equilibrium equation of the mass is:   Finertial + Fspring = 0 
 
The spring force is kx(t) and the inertial force is given by Newton's second law, ma(t).  
Therefore, 

ma(t) + kx(t) = 0 
 
This is a linear homogeneous second-order differential equation of motion with constant 
coefficients.  The solution of this equation is given by 
 

x(t) = A sin(pt) + B cos(pt) 
 
• The constants A and B depend on the value of the initial displacement X0 and of the 

initial velocity V0: 
A = V0/p 

and  B = X0 
  

We define: p = √(k/m) as the circular natural frequency (rad/sec) 
 
• The circular natural frequency, p, linear frequency, f, and natural period of oscillation, T, 

are related by 
p = 2πf = 2π/T 

 
• The response of the system is a shown in Fig. 2.2 and its maximum displacement is given 

by 

 
2.2 DAMPED SYSTEMS 
 
All real systems have at least one way of dissipating energy.  A damped SDOF system such 
as the one shown in Fig. 2.3 will vibrate with continuously-decreasing amplitude due to the 
energy loss during each swing.  The frictional force in an ideal SDOF system is proportional 
to the velocity of the mass, v(t); i.e., 
 

Fdamping= cv(t) 
The differential equation of motion is given by 
 

xmax = (V0/p)2 + (X0)2 
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ma(t) + cv(t) + kx(t) = 0 
 
Since a(t) = ẍ(t) is the second derivative of displacement x(t) and v(t) = x_(t) is the first 
derivative of displacement, we can rewrite the equation of motion in the following form 
 

ẍ(t) + (c/m)x_(t) + (k/m)x(t) = 0 
or 

ẍ(t) + 2ζpx_(t) + p2x(t) = 0 
  
in which 2ζp = c/m and ζ is called the fraction of critical damping.  The value of c (and 
hence ζ) will determine the performance of the system. 
 

If ζ = 1, the system returns to its equilibrium position without oscillating (Critically 
damped system). 

 
If ζ > 1, the system returns to its equilibrium position without oscillating, but less rapidly 
than in the case for a critically damped system (Overdamped system). 

 
If 0 < ζ < 1, the system returns to its equilibrium position with an oscillatory motion that 
decays exponentially (Underdamped system). 

 
An example of time histories for each of these cases is shown in Fig. 2.4. 
 
For the case of ζ <1, the response of the system is given by: 

where pd= p √(1-ζ2) is the damped circular natural frequency of the system.  The damped 
natural period is thus given as Td= 2π/pd.  In this case, the free-vibration motion of the 
system decays exponentially with time as shown in Fig. 2.5. 
 
 
2.3 HARMONIC FORCES 
 
The differential equation of motion for a damped system subjected to a sinusoidal excitation 
of the form P0 sin(ωt) of frequency ω is  
 

ma(t) + cv(t) + kx(t) = P0 sin(ωt) 
 
The steady-state response of the system is given by: 
 

x(t) = (P0/k) Rd sin(ωt-φ) 
 
where 

x(t) = e_ζpt X0 cos pdt + [
V0 + ζpX0

pd
] sin pdt 
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and 
 
 
 
 

Rd is the displacement response or dynamic amplification factor and φ is the phase lag.  
The phase lag represents the time it takes the system to react to the excitation once it has 
reached a steady state motion (see Fig. 2.6).  The sensitivity of Rd and φ to variations of the 
frequency parameter ω/p and damping factor ζ is presented in Fig. 2.7.  At resonance (ω/p=1) 
the largest amplification factors are achieved, but the damping value controls significantly 
the amplitude of the response. 
 
2.4 TRANSIENT RESPONSE 
 
The differential equation of motion for a damped system subjected to a transient excitation 
P(t) is  
 

ma(t) + cv(t) + kx(t) = P(t) 
 

For a system with zero initial displacement and velocity, its transient response to the exciting 
force can be expressed in terms of Duhamel's integral: 
 

τ)dτ(tpsine)P(τ
mp

x(t)
t

d
τ)ζp(t

d

−= ∫ −−

0

1  

 
If the initial displacement and velocity are other than zero, the free vibration that they cause 
should be added to the transient response to obtain the complete response.  The transient 
response of a damped SDOF system subjected to an impulsive force and to a step-like force 
is shown in Fig. 2.8. 
 
2.5 BASE EXCITATION 
 
In structures subjected to earthquakes the driving force is not an explicit force applied to the 
mass, but an implicit inertia force. In the system shown in Fig. 2.9, we define the dynamic 
base displacement as yg(t), the displacement coordinate u(t) is the displacement of the mass 
relative to the base, and the total displacement of the mass from the position of equilibrium is  
x(t) = yg(t) + u(t). 
 
The restoring force is a function of the relative displacement u(t), the damping force is a 
function of the relative velocity, u_(t), and the inertia force is a function of the total 
acceleration of the mass, ü(t)  Dynamic equilibrium leads to the equation of motion: 
 

mü(t) + cu_(t) + ku(t) = -mÿg(t) 
 
Note that in this case the inertia force -mÿg(t) takes the place of the driving force P(t).  An 
example of the response of a SDOF system with a natural period of 2.5 seconds subjected to 
a base excitation (earthquake ground motion) is illustrated in Fig. 2.10. 

Rd = 
1

[1_(ω/p)2]2 + [2ζω/p]2
 

φ = tan_1 
2ζω/p

1 _ (ω/p)2
 



 
Application of Response Spectrum        C.E. Ventura     University of British Columbia 
in Structural Engineering                                        Vancouver, 1 June 2007 

 

Response Spectrum Seminar                                       Lecture 4                                                 Page 6 

Fig. 2.4  Free vibration of damped systems.
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Fig. 2.5  Effects of damping on free vibration of SDOF system.
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Fig. 2.1  SDOF undamped system.
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Fig. 2.3  Damped SDOF system.

 
 
 
 
 
 



 
Application of Response Spectrum        C.E. Ventura     University of British Columbia 
in Structural Engineering                                        Vancouver, 1 June 2007 

 

Response Spectrum Seminar                                       Lecture 4                                                 Page 7 

Force Response Rd

Phase angle

Response amplitude

N

T /p

T /p

Response of system to impulsive load

Response of system to step force

Fig. 2.8  Transient response of SDOF system to simple excitations.

Fig. 2.6  Steady-state response of SDOF
              system due to harmonic excitation.

Fig. 2.7  Dynamic amplification factor and
              phase angle of SDOF systems due
              to harmonic excitation.
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Fig. 2.10  Example of ground motion excitation (1957 Port Hueneme earthquake) 
and response of SDOF system with a 2.5 sec natural period.

Fig. 2.9  Base excited SDOF system.

 
 
 
 
 Note: Figures 2.1 to 2.10 have been adapted from Chopra (2000) 
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3.  EARTHQUAKE EXCITATION 

 
3.1 EARTHQUAKE DAMAGE MECHANISMS 
 
Earthquakes can damage structures in various ways, such as: 
 
• by inertial forces generated by severe ground shaking; 
• by direct fault displacement at the site; 
• by foundation failure due to consolidation, settlement and liquefaction of the supporting 

soil; 
• by landslides, or other surficial movements; 
• by water waves generated by seismic motions (tsunamis & seiches); 
• by fires resulting from earthquake shaking; 
• by large-scale tectonic changes in ground elevation. 
 
Earthquake ground motion is usually measured by strong-motion accelerographs, which 
record the acceleration of the ground at particular locations. 
 
The recorded accelerograms are generally corrected for instrument errors and adjusted for 
baseline, and are integrated to obtain velocity and displacement time histories (see Fig. 3.1). 
 
The peak values of ground acceleration, velocity and displacement are of most interest in 
seismic design.  These parameters, in combination with other factors such as magnitude, 
epicentral distance, distance to the fault, duration of strong shaking, soil conditions of the 
site, and frequency content of the motion, affect the seismic behaviour of a structure. 
 
 
3.2 CHARACTERISTICS OF EARTHQUAKE GROUND MOTION  
 
The characteristics of earthquake ground motion which are of most interest in earthquake 
engineering applications are: 
 

1. Peak ground motions (acceleration, velocity and displacement) primarily influence 
the vibration amplitudes 

2. Duration of strong motion has a pronounced effect on the severity of the shaking. 
3. Frequency content spectral shapes relate to frequencies or periods of vibration of a 

structure (resonance conditions). 
 
A ground motion with moderate peak acceleration and a long duration may be more 
damaging than a ground motion with a larger acceleration and a shorter duration.  In a 
structure, ground motion is amplified the most when the frequencies that dominate the 
motion are close to the vibration frequencies of the structure. 
 
3.3 DEFINITION OF RESPONSE SPECTRUM 
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The earthquake response spectrum concept was introduced by Biot and Housner in the early 
1940s.  The response spectrum is a graphical representation of the maximum response of a 
single-degree-of-freedom oscillator at various frequencies or periods.  The computational 
process to obtain the response spectrum for a prescribed ground motion and system damping 
is shown graphically in Fig. 3.2.  The effect of varying the system damping is shown in Fig. 
3.3. 
 
In contrast with the Response Spectrum, the Fourier Spectrum (see Fig. 3.4) is a graphical 
representation of the frequency content of a recorded motion.  The Fourier Spectrum 
provides and indication of which are the dominant frequencies of the Fourier harmonic 
components that make up the recorded, or computed, motion time history.   
 
Several different definitions of response spectra are employed, but the following have come 
into fairly uniform use: 
 

SD = ⏐u⏐max = displacement response spectrum 
SV = ⏐u_⏐max = velocity response spectrum 
SA = ⏐ü+ÿg⏐max = acceleration response spectrum 
PSV = p⋅SD = pseudo-velocity response spectrum 
PSA = p2⋅SD = pseudo-acceleration response spectrum 

 
Examples of spectral values for SD, PSV and PSA are shown in Fig. 3.5.  PSV and PSA are 
given the prefix "pseudo-" because they are not truly the peak values of velocity and 
acceleration, although they have the correct dimensions.  For most situations in earthquake 
engineering, PSA≈SA, but PSV and SV are not necessarily the same in the same period 
range in which PSA and SA are nearly equal.  As shown in Fig. 3.6, for systems with low 
frequency (high period) or high frequency (low period) SV and PSV can be significantly 
different. 
 
Since SD, PSV and PSA are essentially a measure of the maximum relative displacement of 
the system, and in the range of structural periods of practical interest PSA≈SA and PSV≈SV, 
it is possible to present all this information in one single logarithmic plot, such as the one 
shown in Fig. 3.7.  In this plot, the horizontal axis represents structural periods (or 
frequencies), the vertical axis gives a measure of the system velocity, and the diagonal axes 
give a measure of the system displacement and acceleration.  Hence, the quantities of main 
interest in design can be readily obtained from a single response spectrum plot. 
 
3.4 EARTHQUAKE DESIGN SPECTRUM 
 
• The detailed characteristics of future earthquakes is not known. 
• Generally, earthquake design spectra are obtained by averaging a set of response spectra 

from records with common characteristics. 
• In practice, design spectra are presented as smooth curves of straight lines. 
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• Difference between Response Spectrum and Design Spectrum: 
 

A Response Spectrum is a plot of the maximum response of a single-degree-of-
freedom oscillator with different frequencies and damping ratios to a specific ground 
motion. 

 
A Design Spectrum is a specification of the seismic design force or displacement of 
a structure having a certain frequency or period of vibration and damping. 

 
These two concepts are illustrated in Fig. 3.8 where the response spectrum for recorded 
motions during the 1994 Northridge earthquake is compared with the NBCC spectra. 

 
3.5 TIME HISTORY RESPONSE ANALYSIS 
 
The response to earthquake loading can be obtained directly from Duhamel’s (or 
Convolution) integral: 
 

τ)dτ(tpsine)(τy
p

u(t)
t

d
τ)ζp(t

g
d

−= ∫ −−

0

1
&&  

 
• It is convenient to express the forces developed in the structure during the earthquake in 

terms of the effective inertia forces.   
 
• The inertia force is the product of the mass and the total (absolute) acceleration.  This 

total acceleration can be expressed as 
 

)t(up)t(up)t(x 2−−= &&& ζ  
 

• For small values of damping, the total acceleration can be approximated as 
 

)t(up)t(x 2−≈&&  
 

• The effective earthquake force (base shear) is then given as 
 

)t(ump)t(xm)t(Q 2−≈= &&  
 
• The overturning moment acting on the base of the structure can be determined by 

multiplying the inertia force by the story height (h): 
 

)t(uhmp)t(xhm)t(M 2−≈= &&  
 

3.6 RESPONSE SPECTRUM ANALYSIS 
 
A time history analysis may require considerable computational effort, even for simple 
structural systems.  For practical structural design only the maximum response quantities are 
required in most of the cases. 
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The maximum base shear and maximum overturning moment can then be computed using 
peak response values obtained from the response spectrum plot: 

 
3.7 NONLINEAR ANALYSIS 
 
During actual severe ground shaking buildings and other structures may be deformed beyond 
their elastic range.  In the elastic range, the material is resilient like a spring and returns to its 
original condition without damage.  Beyond the elastic range; deformations may enter the 
plastic range, where damage sets in. 
 
The equation of motion of a system specifies the requirement of equilibrium between the 
applied force, the inertia force, the damping force, and the spring force.  The last three forces 
depend on the physical properties of the system (mass, damping and stiffness).  If these 
properties do not vary with time, the system is said to be linear and the solution methods 
discussed above are applicable.  However, if any of these physical characteristics vary with 
time, the system becomes nonlinear and special methods must be devised for its solution.  In 
general, the mass is time invariant.  Since damping characteristics cannot, in any case, be 
defined with certainty, it is not unreasonable to assume that they also remain constant with 
time.  
 
The response of real structures, when subjected to large dynamic loads, often involves 
significant nonlinear behaviour.  In general, nonlinear behaviour includes the effects of large 
displacements and or nonlinear material properties.  The more common type of nonlinear 
behaviour is when the material stress-strain, or force-deformation, relationship is nonlinear. 
This is because of the modern design philosophy that a well-designed structure should have 
a limited number of members which require ductility and that the failure mechanism be 
clearly defined (Wilson, 1996).  Such an approach minimizes the cost of repair after a major 
earthquake. 
 
A large number of very practical structures, when subjected to static or dynamic loading, 
have a limited number of points or members in which nonlinear behaviour takes place.  Local 
buckling of diagonals, uplifting at the foundation, contact between different parts of the 
structures and yielding of a few elements are examples of such systems.  For dynamic loads, 
it is becoming common practice to add concentrated damping, base isolation and other 
energy dissipation elements. 
 
The global dynamic equilibrium equation, at time t, of an elastic structure with nonlinear or 
energy dissipating elements can be written in the following form: 
 

mü(t) + cu_(t) + R(t) = -mÿg(t) 
 

Qmax = mp2 SD = m PSA = m SA

Mmax = hmp2 SD = hQmax
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In this equation, R(t) is the restoring force due to the sum of the forces in the linear and 
nonlinear elements of the system.  For a linear, elastic system, R(t) = ku(t).  There are several 
efficient techniques for evaluating the response of nonlinear structural systems, but in 
general, a nonlinear dynamic analysis is a very computationally demanding task. 
 
Key Issues in Nonlinear analysis: 
 
· The basic aim is to make better assumptions about stiffnesses, in order to get more 

accurate displacements, deformations and forces. 
· Modelling decisions become more complex since stiffnesses can vary in complex ways, 

and be dependent on many parameters. 
· Numerical computations are more expensive. 
· Cannot superimpose results for separate load cases. 
· Some basic and difficult questions: 

(1) how much sophistication is justified? 
(2) how much accuracy can be expected? 
(3) what are the weak links in the chain of assumptions? 
(4) how sensitive are the results to changes in specific assumptions? 

· Nonlinear analysis results must be used with even more judgment than those from linear 
elastic analyses. 

 
Is nonlinear analysis needed? 
 
· Linear analysis can be used to estimate strength demand.  Nonlinear analysis can be used 

to estimate deformation demand.  Strength demand is reasonable for design, while 
deformation demand is more reasonable for damage prediction. 

 
· Results must be interpreted cautiously since there are many uncertainties in modelling 

and load selection.  Ideally the uncertainties should be quantified, and their effects 
accounted for, which in practice this is not yet feasible. 

 
· Nonlinear analysis is valuable for: 

a) research, including post-earthquake evaluation. 
b) studies of expensive or critical structures, where thorough analyses can be performed. 
c) design where the nonlinearities are isolated and controlled (e.g. base isolation). 
d) retrofit of important existing structures. 
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Fig. 3.1  Recorded ground motions during the 1994 Northridge earthquake.  



 
Application of Response Spectrum        C.E. Ventura     University of British Columbia 
in Structural Engineering                                        Vancouver, 1 June 2007 

 

Response Spectrum Seminar                                       Lecture 4                                                 Page 15 

Fig. 3.2  Computation of deformation response spectrum (after Chopra, 1995).

Fig. 3.3  Information contained in a response spectrum plot.
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Fig. 3.4  Fourier spectrum and frequency content of
                earthquake ground motion (1940 El Centro).  
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Fig. 3.5  Spectral Responses of Engineering Interest (after Chopra, 1995).
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Fig. 3.6  Comparison of SV vs PSV and SA vs PSA response spectra
for systems with 5% damping (El Centro 1940 record).

S
PS

P
S

Combined SD-PSV-PSA response spectrum

Fig. 3.7  Tri-partite Log-Log plot of response spectrum (after Chopra, 1995). 



 
Application of Response Spectrum        C.E. Ventura     University of British Columbia 
in Structural Engineering                                        Vancouver, 1 June 2007 

 

Response Spectrum Seminar                                       Lecture 4                                                 Page 19 

Fig. 3.8  Comparison of response spectra from 1994 Northridge 
                earthquake ground motions and NBCC design spectra.  
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4.  MULTI-DEGREE-OF-FREEDOM (MDOF) SYSTEMS 

 
4.1 FORMULATION OF EQUATIONS OF MOTION 
 
Structures with several layers of mass (such as buildings with several floors) do not behave 
like SDOF systems.  Such structures must be evaluated as MDOF systems whose vibrations 
will be a combination of the vibration of each layer. 
 
In the dynamic analysis of typical buildings the mass of the structure is assumed to be 
concentrated at the floor levels and to be subjected to lateral displacements only. 
 
For the three-storey building shown below, its dynamic behaviour is completely defined by 
the three storey displacements xa, xb, and  xc. 
 
The equation of motion of any storey is the equation of dynamic equilibrium of all the forces 
acting on the storey mass: 

 
FIa(t) + FDa(t) + FSa(t) = Pa(t) 
FIb(t) + FDb(t) + FSb(t) = Pb(t) 
FIc(t) + FDc(t) + FSc(t) = Pc(t) 

 
For this lumped mass system, the inertia forces are given simply as the product of the storey 
mass and the storey acceleration: 
 

FIa(t) = Maẍa(t)  FIb(t) = Mbẍb(t)   FIc(t) = Mcẍc(t)  
 
which may be represented in matrix form as 

In a symbolic form, this expression may written as  {FI} = [M]{ẍ} in which {FI} is the inertia 
force vector, {ẍ} is the acceleration vector, and [M] is the mass matrix. 
 
The elastic forces Fs depend on the displacement of the system and may be expressed in 
terms of the stiffness influence coefficients: 
 

FSa(t) = kaaxa(t) + kabxb(t) + kacxc(t) 
FSb(t) = kbaxa(t) + kbbxb(t) + kbcxc(t) 
FSc(t) = kcaxa(t) + kcbxb(t) + kccxc(t) 

 
The general stiffness influence coefficient kij may be defined as the force corresponding to 
displacement coordinate i resulting from a unit displacement of coordinate j.  In matrix form 
this expression can be written as 

⎪
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In a symbolic form, this expression may written as  {FS} = [K]{x} in which {Fs} is the elastic 
force vector, {x} is the displacement vector, and [K] is the stiffness matrix of the structure. 
 
By analogy with the expression for elastic forces and if the damping is assumed to be of the 
viscous type, the damping forces could be written as {FD} = [C]{x_} in which {FD} is the 
damping force vector, {x_} is the velocity vector, and [C] is the damping matrix. 
 
The equation of equilibrium can then be written as 

 
[M]{ẍ} + [C]{x_} + [K]{x} = {P(t)} 

 
   
4.2 VIBRATION MODE SHAPES AND FREQUENCIES 
 
The dynamic response of a structure depends upon two important factors: 

1) its period of vibration T or frequency p, 
2) its assumed displacement shape 

 
The free vibration behaviour of a structure is expressed by the equations of motion adapted to 
the special condition of no damping ([C]=[0]) and with no applied loading ({P(t)}={0}). In 
this case 

 
[M]{ẍ} + [K]{x} = {0} 

 
The motions of the system in free vibration are simple harmonic, which may be written as 
{x} = {A}sin(pt).  Substituting this expression and its corresponding second order derivative, 
the equations of motion become 
 

-p2[M]{A} + [K]{A} = {0} 
or 

[K]{A} = p2[M]{A} 
 
The solution of this eigenvalue equation for a system having N degrees of freedom provides 
a vibration frequency pn (or period Tn=2π/pn) and a vibration shape (Mode Shape) {φn} for 
each of its N modes of vibration. 
 
The vibration mode shapes {φn} of any MDOF system have two orthogonality properties that 
make possible an important simplification in the general equations of motion: 
 

{φn}T[M]{φm} = 0 for m=/ n 
{φn}T[K]{φm}  = 0 for m=/ n 
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An illustrative example of computation of mode shapes and natural frequencies for a 5-DOF 
system with different combinations of floor stiffnesses and masses is presented in the 
Appendix. 
 
4.3 MODAL SUPERPOSITION METHOD OF ANALYSIS 
 
There are N independent mode shapes for an N-degree-of-freedom undamped system.  Any 
arbitrary displaced shape of the structure may be expressed in terms of the amplitudes of 
these shapes.  In general 

∑
=

=
N

n
nnii Y(t)x

1
φ  

 
where Yn is the amplitude of the nth mode.  The set of values Yn expressed in vector form 
{Y} is called the normal coordinates of the system.  The equations of motion can be 
expressed in terms of the normal coordinates as follows 
 

[M][Φ]{Ÿ} + [C][Φ]{Y_} + [K][Φ]{Y} = {P(t)} 
 

Making use of the orthogonality properties, these equations can be converted into a set of N 
independent second order differential equations similar to those used to define the dynamic 
behaviour of SDOF systems: 
 

Ÿn(t) + 2ζnpnY_ n(t) + pn
2Yn(t) = Pn

*(t)/Mn
*

      
where 
 

Mn
*

  = {φn}T[M]{φn} is the Generalized mass of the nth mode shape 
 

Cn
*

  = {φn}T[C]{φn} = 2ζnpn Mn
*

   is the Generalized damping 
 

Kn
*

  = {φn}T[K]{φn} = pn
2 Mn

*
   is the Generalized stiffness 

 
Pn

*(t) = {φn}T{P(t)} is the Generalized Loading 
 
 
The normal coordinates (mode shapes) of a MDOF system reduce its equations of motion to 
a set of independent equations, one for each mode of vibration. 
 
The dynamic response of the MDOF is then computed by superposition of individual modal 
components obtained from the solution of the above equation (Modal Superposition 
Method) 
 
The steps for computing the dynamic response of a MDOF system by modal analysis are: 

1. Define the structural properties: mass matrix, stiffness matrix, damping matrix (or 
modal damping ratios). 

2. Determine the natural frequencies and mode shapes. 
3. Compute modal responses of interest. 
4. Combine the contributions of all modes to determine the total response. 
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4.4 EARTHQUAKE RESPONSE ANALYSIS 
 
For a ground excited MDOF system, the uncoupled differential equations of motion can be 
easily adapted to compute the relative motion of the structure with respect to its moving base 
by calculating first the effective floor loads,  
 

Pieff(t) = -Miÿg(t) 
 
and the complete effective applied load vector is given by 
 

{Peff(t)} = [M]{-1}ÿg(t)  
 
where {-1} represents a vector of negative ones.  The Generalized effective earthquake 
loading for mode n is given by 
 

P*
eff(t) = {φn}T[M]{-1}ÿg(t) = Γnÿg(t)  

 
in which Γn= {φn}T[M]{-1}  represents the earthquake modal participation factor for mode n. 
 
The uncoupled equations of motion are therefore: 
 

Ÿn(t) + 2ζnpnY_ n(t) + pn
2Yn(t) = Γnÿg(t)/Mn

* 
 
The response of the nth mode at any time t may be obtained by numerical evaluation of 
Duhamel’s integral: 
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The complete displacement of the structure at time t is then obtained by superposition of all 
the modal responses: 
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An example of modal contributions to shear forces in a frame building is shown in Fig. 4.1. 
 
4.5 RESPONSE SPECTRUM ANALYSIS 
 
The entire time history of displacements and forces can be computed using the method of 
superposition described above. 
 
The uncoupled equations of motion are equivalent to those for SDOF systems.  Thus, the 
maximum response of each mode of a MDOF system can be obtained from the earthquake 
response spectrum method described for SDOF systems. 
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The spectral displacement, SDn obtained from a response spectrum for a system with period 
Tn and damping ζn can be used to obtain the maximum response of mode n: 

The distribution of maximum modal displacements is given by 

Similarly, the distribution of maximum effective earthquake forces in this mode becomes 

The maximum base shear for this mode is given by 

Examples of modal base shears for a 10-storey frame building obtained from a response 
spectrum analysis are presented in Fig. 4.2. 
 
Since the individual maximum modal responses may not occur at the same time, the total 
maximum values cannot not, in general, be obtained as the sum of the individual modal 
maxima.  An approximation to the total maximum response may be obtained by proper 
combination of modal maxima (sum of absolute values, SRSS, CQC, etc.) 
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4.6 MODAL COMBINATIONS 
 
From a response spectrum the maximum modal deformations and member forces can be 
readily computed.  These can be considered as “correct” or “exact” values.  Since modal 
maxima do not occur at the same time, in general, any combination of modal maxima may 
lead to results that may be either conservative or unconservative, depending on what modal 
combination technique is being used and on the dynamic properties of the system being 
analysed.  Three of the most commonly used modal combination methods are: 
 

a) Sum of the absolute values: This method leads to very conservative results.  It 
assumes that maximum modal values occur at the same time.  The response of any given 
degree of freedom of the system is estimated as a linear combination of the absolute 
values of the maximum modal responses, i.e.; 

∑
=

=
L

n
n,ii maxmax

xx
1

 

 
in which i is the degree of freedom of interest and L is the number of modes being 
considered in the analysis.   Member forces are computed using a similar expression. 

 
b) Square root of the sum of the squares (SRSS): This method assumes that the 
individual modal maxima are statistically independent.  The response of any given degree 
of freedom of the system is estimated as 

∑
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=
L

n
n,ii )x(x

maxmax
1

2

 

 
The SRSS method generally leads to values that are closer to the “exact” ones than those 
obtained using the sum of the absolute values.  The results, however, could be either on 
the conservative or unconservative side.  When the modal frequencies of the system are 
closely spaced, the results from an SRSS analysis can be significantly unconservative. 

 
c) Complete quadratic combination (CQC): This method was introduced in the early 
1980's and it is based on random vibration theory.  It has found wide acceptance in 
structural dynamics and has been incorporated in several commercial analysis programs.  
The following double summation is used to estimate maximum responses, 
 

∑∑
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In which, ρ is a cross-modal coefficient (always positive), which for constant damping is 
evaluated by 
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where r = pn / pm and must be equal to or less than 1.0. 

 
Similar equations can be applied for the computation of member forces, interstorey 
deformations, base shears and overturning moments.   

 
4.7 PARTICIPATING MASS 
 
The number of modes to be included in the computation of the responses of a MDOF system 
can be determined by reference to the participating mass.  Building codes generally require 
that a least 90% of the participating mass be included in the calculation of response for each 
principal horizontal direction.  Such requirement is based on a unit base acceleration and the 
corresponding base shear due to that load. 
 
The base shear for an undamped system in which SA = 1g for all modes, is therefore given as 
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It can be readily demonstrated that when all the modes are accounted for, the base shear 
should be equal to mg, where m is the total mass of the system.   The base shear computed 
including only “L” modes, will be 
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A modal mass participation factor, MPF, can now be defined in terms of the of the total 
mass, m, by 

*
n

n
n Mm

MPF
21 Γ

=  

 
If all the modes are included in the analysis, the sum of all the MPF’s will be equal to 1.0.  
But it should be kept in mind that this MPF is based on the accuracy of the solution for a base 
motion only.  It should not be used for other types of loadings acting on the structure. 
 
4.8 RAYLEIGH’S METHOD 
 
This procedure was developed by Lord Rayleigh to analyse vibrating systems using the law 
of conservation of energy. 
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Its principal use is for determining an accurate approximation of the natural frequency of a 
structure. 
 
If the assumed vibration shape of a MDOF system is represented by a dimensionless shape 
vector {ψ}, the displacement vector may be expressed as 
  

{x(t)} = {ψ}Y(t) 
 
For an undamped system, the maximum kinetic energy of the structure is given by 
 

KEmax = ½ p2Y2{ψ}T[M]{ψ} 
 
and the maximum potential energy is given by 
 

PEmax = ½ Y2{ψ}T[K]{ψ} 
 
According to the principle of conservation of energy for undamped systems KE = PE, which 
leads to 

 
4.9 DAMPING 
 
When the cyclic excitation on a structure ceases, its response tends to die away.  This is the 
phenomenon known as damping.  If the damping is assumed to be “viscous”, i.e., the 
damping force varies as the velocity of the system relative to the ground, the mathematics 
become reasonably easy to solve.  For this reason, the assumption of viscous damping is 
often adopted in analysis, although practical mechanisms of damping in buildings often 
follow somewhat different patterns. 
 
Damping in building arises from a variety of causes, including aerodynamic drag, friction in 
connections and cladding, soil-structure interaction, and bond slip and cracking in reinforced 
concrete.  These causes predominate when stresses are generally below yield.  Plastic 
yielding gives rise to a different source of energy dissipation - hysteretic damping. 
 
For the case of systems with equivalent viscous damping, the triple matrix product [φ]T[C][φ] 
may result in a matrix being or not diagonal, depending on the distribution of camping in the 
system.  If the result is a diagonal matrix, then the system is said to be a “classically damped 
system” and the classical modal superposition method of analysis is applicable.  For the case 
in which the product is a non-diagonal matrix, the system is said to be a “non-classically 
damped system”.  Such systems are not amenable to classical modal analysis, and they do not 
possess the same natural modes as the undamped system. 
 
Classical damping is an appropriate idealization if damping mechanisms are distributed 
throughout the structure.  Two common methods for constructing the damping matrix [C] are 
Rayleigh damping and the Caughey damping. 

p = 
{ψ}T[K]{ψ}
{ψ}T[M]{ψ}
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In the Rayleigh damping, [C] is constructed in terms of the mass and stiffness matrices as: 
 

[C] = α[M] + β[K] 
 
and the damping ratio for the nth mode is: 
 

ζn = ½ (α/pn + β pn) 
 
The coefficients α and β can be determined from specified damping ratio for two distinct 
modes (“i” and “j” modes) as: 
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In this approach, no more than two modes can have the same damping factor (see Fig. 4.3).  
If damping ratios are specified for more than two modes, Caughey damping allows the 
construction of a classical damping matrix.  In this case: 
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where N is the number of degrees of freedom in the system and αr are constants.  The 
damping ratio for the nth mode is given by 
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The coefficients αr can be determined from the damping ratios specified in any number of 
modes and solving the algebraic system of equations resulting from the repeated application 
of the above equation.  With αr determined, then the damping matrix can be assembled. 
 
A more general form for constructing the damping matrix is by making use of the following 
equation: 
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4.10 DISCUSSION 
 
Most code loads are based on studies of building response using modal analyses in 
conjunction with the spectra from real earthquakes, or alternately in conjunction with a 
smoothed design spectrum. 
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The design spectrum in the design codes (see example in Fig. 4.4), is a simplified spectrum 
shape.  It is used in dynamic analysis to give a better distribution of forces throughout the 
height of the structure, but the results are generally scaled to match the static code base shear. 
Nevertheless, it is a reasonable design spectrum. Figure 4.5 show the shear force vs. height 
for a uniform wall structure for two different first mode periods, T=1 and T=4 seconds. The 
weight and height of the structure is taken to be unity and the model is a 20 node vertical 
cantilever with equal masses at each node. A wall structure, as opposed to a frame, has been 
chosen because the higher modes have higher modal mass ratios, and the periods are more 
widely separated.  This result in much larger second and third mode forces, especially for the 
longer period structures where the first mode spectral acceleration is quite small, but the 
higher modes may be in the region of peak spectral acceleration. The root-sum-square (RSS) 
result shown in the figures is for the first 3 modes.  Figure 4.6 shows the moment distribution 
up the height for the same walls.  
 
Note that for the T=1 second structure the total shear distribution, as given by the RSS 
results, is essentially given by the first mode shear. But for the T=4 second structure the 
second mode shear dominates. The bending response for both structures is essentially all 
from the first mode, as seen in Fig. 4.6. That the second mode can dominate the shear forces, 
while the first mode dominates the moment, is the cause for some of the adjustment factors 
for shear and moment distributions that will be mentioned later in the section on code forces. 
Frame structures behave differently in that the first mode dominates both the shear and 
moment distribution. 
 
The examples shown have used the root-sum-square (RSS) method of combining modal 
forces. If the period difference between modes is small this method can be in error, and a 
more complicated method such as the complete-quadratic-combination (CQC) method is 
recommended. Many programs offer both types of combination. 
 
One of the disadvantages of the modal method, employing a combination rule such as RSS,  
is that the sign of the forces is lost. Thus if you are considering axial load in a column you 
cannot tell if it is tension or compression. In addition equilibrium of maximum member 
forces, at say joints, will not be satisfied as the maximums may come at different times in the 
various members. 
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Shear Force (kN) Modal Shear / Total Shear

Fig. 4.1  Modal contributions to shear forces in a frame building.

Fig. 4.2  Modal responses of a ten-storey frame building. 
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Rayleigh Damping: [C] = [M] + [K]" $

Fig. 4.3  Illustration of how Rayleigh damping affects modal damping ratios.  
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Fig. 4.4 Typical form of Design Response Spectrum 
 
 
 

 
a) Wall system with T1=1 sec   b) Wall system with T1=4 sec  
 
Fig. 4.5 Example of Dynamic Shear Distributions (after D.L. Anderson) 
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b) Wall system with T1=1 sec   b) Wall system with T1=4 sec  
 
Fig. 4.6 Example of Dynamic Moment Distributions (after D.L. Anderson) 
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