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ABSTRACT 

 

In this paper, an H∞ optimal control scheme is employed to reduce the vibrations of a structure under 
seismic excitations and in the presence of floors and columns mass uncertainty. It is known that in an 
occasionally-populated building, e.g., a theatre, in which considerable amount of mass uncertainty exists; 
a non-robust active vibration control system may lead to closed-loop instability, while the uncontrolled 
structure is stable by nature. It is also known that, when the relative mass of columns, compared to the 
mass of floors, is high, in particular in the lower floors of the building, the structural mass matrix turns out 
to have off-diagonal terms. Such additional terms are modeled as a full block uncertainty matrix acting on 
the first two floors of a 5-story building, and an H∞ active control system is designed. Next, by employing 
the µ-analysis technique, the robustness of the feedback control system under mass variations is studied, 
and the tolerable bound of mass uncertainty is further increased to 10%, using the µ-synthesis technique. 
Simulation studies depict the effectiveness of the designed control system. 
  

Introduction 

 
With the increased number of highly populated buildings, the safety of such structures under seismic 
excitations is an important issue. Active and semi-active control systems have provided new possibilities 
and opportunities for making buildings a safer place to be in. Recent researches and achievements on 
magneto-rheological (MR) dampers have improved the effectiveness of such devices for constructing 
better semi-active control systems. In order to reduce the response of an excited structure with parametric 
uncertainty on the stiffness and damping, Calise (1998) proposed an H∞ control approach. For the 
situation that the available peak control force is limited, Yang and  Jabbari (2004) used the H∞ control 
scheme, without taking the plant uncertainty into account. In Majia (2005), the design of a robust controller 
using QFT and sliding mode control was investigated, and a six story building with a semi active control 
strategy was presented. In Wang (2004), a robust active control with uncertainties on the control input and 
disturbance matrices was proposed.  
 
The present paper concentrates on the building mass uncertainty, which is the most obvious kind of 
uncertainty in highly populated buildings, like theatres and schools. A possible mathematical structure of 
mass uncertainty will be studied in this paper. In particular, the mass matrix for an ordinary lumped model 
of a building turns out to be diagonal, while for lower floors where the mass of columns may be 
comparable to the mass of floors, some off-diagonal terms may appear in the mass matrix, which can be 
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modeled as an uncertainty model in a 2-by-2 full block form. The main objective of this paper is to add 
such a mass uncertainty to the otherwise diagonal mass matrix of the lumped model, and further design a 
robust closed-loop control system which not only retains the closed loop stability, but also provides a good 
performance in terms of vibration reduction under seismic excitations. For the purpose of illustration, we 
have used a simple model of a 5-story building, and employed the H∞ method to design an active vibration 
control system for it. By using the µ-analysis technique, the level of tolerable mass uncertainty is studied 
and by employing the µ-synthesis approach, the level of the robustness of the closed-loop control system 
under structured mass uncertainty is increased. Simulation studies are provided to assess the 
effectiveness of the designed control system. 
 

Model of structure 

 
The specification of the 5-story building considered in this paper, is given in Fig.1 and Table 1. 

 

 

 
Figure 1. General view of the structure. 

 
 

Table 1.   Properties of the structure 
 

 

 
 
 
 
 
 
 
 
 
 

 
Stiffness matrix of this structure is in the form of 
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The mass matrix (M) is a diagonal matrix whose diagonal entries are the masses of the floors. We can 
write the lumped equation of motion for this structure as 
 

( ) ( ) ( ) ( ) ( ),MX t CX t KX t Du t Ef t+ + = +
&& &            )2( 

 

where, X(t)  is the vector of floors displacements, )(tu is the control force and )(tf  is the earthquake 

excitation force. Pre-multiplication of this equation with 
1M −

 gives  
 

1 1 1 1
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= − − + +
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By using )(tX  and )(tX&  we define the new column vector [ ]( ) ( ), ( )
T

q t x t x t= & . 

Now, equation (3) can be re-arranged as  
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The matrices B andH, defined below, depict the positions of the control and external forces in the new 
coordinate system, respectively, i.e.,  
 

1 1

0 0
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         )  5( 

 
Controller Design with No Mass Uncertainty 

 
In order to design a controller, the generalized plant is constructed first and an H∞ controller is designed 
afterwards (K. Zhou 1998). By measuring the accelerations of the floors, a very good performance in 
terms of vibration reduction is achieved, yet with a relatively large control effort, particularly at lower floors. 
By imposing a heavier penalty on the control input, through selection of appropriate weighting functions, 
the peak control forces are reduced to acceptable levels. Comparison of required forces, with different 
measuring instruments, i.e. position, velocity and acceleration, at the 1

st
 floor is shown in Fig. 2. The larger 

forces correspond to the acceleration feedback case, depicting a more influencing control strategy, 
compared to the two other cases.  
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Figure 2. Actuator forces applied to the 1

st
 floor with the optimal controller strategy under three kinds of 

feedbacks (position, velocity and acceleration). The larger force corresponds to the case with 
acceleration feedback. 
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Based on the above analysis, the acceleration feedback was selected and an optimal controller of 20

th
 

order was designed. For the sake of brevity the details are omitted here. 
 

Uncertainty model 

 
Let's assume that the building under consideration is comprised of a theatre hall in the first floor and a 
populated training center in other floors, i.e., there is an occasional relatively large mass uncertainty during 
day times. As shown in Table 1, the specific mass of each floor is around 700 kg/m

2
. Considering the 

potential usage of a typical theatre or training center, one can assume a typical value of 10% mass 
uncertainty. On the other hand, due to the usually larger mass of the columns in the lower floors, a mass 
uncertainty matrix of 2-by-2 is selected, which adds some off-diagonal terms to the otherwise diagonal 
mass matrix. Here, we assume that such a full block uncertainty exists in the first two floors of the building 
only, and the rest of the mass uncertainty appears as diagonal additive terms with a bounded uncertainty 

of 10% on other floors. In other words, we assume that the uncertain mass matrix ( uncM ) can be written, 

with respect to the nominal mass matrix ( M ), as (0.1 )
unc m

M M M= + × × ∆ , where the structure of 

m
∆  is as 
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∆  is less than one. 

  
It is customary to show such uncertainties as a linear fractional transformation, i.e., 
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where LF is a linear fractional transformation in a lower feedback configuration (K. Zhou, 1998), i.e.,  
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Bring in the following upper linear fractional representation, uF : 
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Fig. 3 depicts a graphical representation of this transformation. 
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Figure 3. Graphical representation of (10) 

  
The overall dynamical equations of the system together with the mass uncertainty model are shown in 
Fig.4. 
 

 

 
Figure 4. Dynamic model of structure including the mass uncertainty. 

 

Here, mW and mZ are the disturbance input signal (earthquake) and the output signal (structural 

vibrations), respectively, and u is the input to the plant, which includes the actuators force. 

 
Robust Stability Analysis 

 
Considering the structure shown in Figure 4, our objective is to analyze the robust performance of the 
closed-loop control system, and further improve the design for achieving a robust performance under a 
wider range of mass uncertainty. 

 
Figure 5. Upper LFT form of Fig. 4. 

 
An upper LFT form of Figure 4 with some loop shaping weighting functions included  in T(s) is shown in 
Fig. 5; see (K.Zhou 1998) .  
 
For notational purposes, we drop "s" form T(s), and partition it according to the dimensions of the input 
and out vector, i.e., 
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It is a well-known fact (K. Zhou 1998) that the system in Fig. 5, is robustly stable for any stable 

( )
m

s∆ satisfying  
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1
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T j

σ ω ω

σ ω
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Similar tests exist for the robust performance of the closed-loop system, in which a fictitious full block 

uncertainty term 
F

∆ of size (
i o

n n× ) is added to ( )
m

s∆ , where 
i
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o
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outputs of T  respectively, and 1F ∞

∆ < . In other words, the new uncertainty block matrix is defined as 
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and the robust performance condition would be as 

11

1
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T j
σ ω ω

σ ω

∆ < ∈  

  

The nominal performance condition norm (with 0∆ = ) for our studied case is shown in Fig. 6. It can be 

seen that the value of 
11

( ( )) ( ( ))j T jσ ω σ ω∆  is less than one everywhere, i.e., the nominal performance 

is achieved. 

 
 

Figure 6. Nominal performance test. 
 
The robust performance condition test with 10% mass uncertainty is shown in Fig. 7. It can be seen that, 

in this case, the value of 
11

( ( )) ( ( ))j T jσ ω σ ω∆  is larger than one in some parts of the frequency range, 

i.e., the robust performance condition is not satisfied. 
 

 
 

Figure 7. Robust performance with 10% mass uncertainty 
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We may apply the worst case performance test and show that the system is robust under 4% mass 
uncertainty, or so (Fig. 8). The problem is analyzed once more by assuming 4% uncertainty. Results of the 
new test show that this controller may still be robust under somewhat higher level of uncertainties. Some 
iteration provide the largest value of the mass uncertainty, 7.5%, under which the robust performance is 

preserved, as depicted in the Fig. 9.  

 
 

Figure 8. Worst case test with 10% mass uncertainty 
 

 

 
Figure 9. Robust performance with 7.5% mass uncertainty. 

 
In order to achieve an even larger of tolerable mass uncertainty, the µ-synthesis technique is employed. In 
particular, the so called D-K iteration strategy is employed (see (K. Zhou 1998); details are omitted here). 
 
The new controller turns out to be of order 34, and the robust performance test is shown in Fig. 10, which 
proves the robust performance under 10% mass uncertainty. 

 

Figure 10. Robust performance with 10% mass uncertainty (D-K iteration). 

 
Simulation studies 

 

The displacement response of the structure under a typical seismic excitation is depicted in Figures 11 
and 12. In particular, the effectiveness of the designed robust active control system, compared to the 
uncontrolled system, is demonstrated. Furthermore, a considerable reduction in the acceleration response 
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is observed as in Figure 13. 
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Figure 11. Displacement response for the 5th floor. 
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Figure 12. Maximum displacement of the excited floors with active control and with no control. 
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Figure 13. Maximum acceleration of the excited floors with active control and with no control. 
 

Conclusions 
 

In this paper we have concentrated on the design of a robust control system, which effectively reduces the 
structural vibrations under seismic excitations, and in the presence of floors mass uncertainty. The 
nominal, as well as, robust performance of the controlled system was studied and the design was 
improved so that the desired level of performance under 10% mass uncertainty is achieved. The structure 
of the uncertainty block was selected so that the effect of the relatively high mass of the columns between 
1

st
 and 2

nd
 floors is taken into account. The effectiveness of the design was demonstrated through 

simulation studies. 
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