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ABSTRACT 

 

Recent enhancements to and adoption of nonlinear time history finite element analysis for seismic 
response assessment of structures have motivated the need for suites of ground motions that represent 
expected seismicity at all hazard levels of interest.  The availability of high intensity records often 
necessitates the need for scaling of ground motions.  This approach is intrinsic to use of such procedures 
as incremental dynamic analysis.  Recent research has produced recommendations for selection and 
scaling of ground motions for use in such analyses based on magnitude, distance, and epsilon.  However, 
research has largely been limited to two-dimensional planar analysis of buildings.  Three-dimensional finite 
element models with three or more components of ground motion input and the corresponding three-
dimensional response of structures can differ considerably from such two-dimensional analyses.  This 
paper considers a typical California reinforced concrete highway overpass bridge in the three-dimensional 
scaling of records for use in incremental dynamic analysis.  Such bridges exhibit distinct transverse and 
longitudinal response shapes for the first two modes. Comparisons are made between scaling the motions 
to the spectral ordinate at the fundamental period of the structure, an average of the longitudinal and 
transverse periods, a square-root-sum-of-squares combination, an average of spectral quantities over a 
period band, and different scale factors for the longitudinal and transverse components based on their 
respective spectral ordinate.  Scaled results are then compared with cloud analysis of un-scaled records 
using a larger catalog of ground motions. Recommendations for three-dimensional scaling of ground 
motions for bridge structures are presented. 
  

Introduction 

 
Considerable attention has been devoted to the two-dimensional idealization, modeling, excitation, and 
response of structures under large earthquake demands. In particular, seismic demands are quantified 
using nonlinear time history analysis for a particular structural model and a selection of ground motion 
records. Many recent examples of analytical studies of this nature are available in the literature, especially 
those studies applied to buildings (e.g., Liu and Goel, 2006; Liao and Wen, 2004; Haselton and Baker, 
2006; Kunnath and Kalkan, 2005).  Fewer examples exist for bridges (e.g., Shantz, 2006). However, a 
common theme amongst all of the studies is the need for adequate selection and scaling of the ground 
motion records used to represent the hazard environment expected for the structure. This is particularly 
relevant when existing recorded motions do not exist (as is the case for the central US) or when extreme 
high-intensity records are needed for collapse simulation.  
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When considering the two-dimensional analysis of structures, numerous guidelines have been established 
for the selection of ground motion records (Iervolino and Cornell, 2005) based on properties of the 
earthquake such as magnitude and properties of the site such as closest distance to fault and soil type.  
Additional studies have suggested the selection of ground motion records taking into account the spectral 
shape as well (Baker and Cornell, 2005; Bray et al 2002; Haselton and Baker 2006). The measure of 
spectral shape used in these studies is epsilon, or the number of standard deviations the response 
spectral ordinate falls from a predicted median spectral value. Spectral shape information is also included 
in scale factors derived from the inelastic SDOF surface of Shantz (2006). The optimal scale factor 
(Shantz, 2006) is similar to epsilon as both show the deviation of a particular record from a common 
design value, such as that obtained from an attenuation relationship. Complementary efforts, such as 
those of the ATC-58 project (http://www.atcouncil.org/atc-58.shtml) and next generation attenuation 
models (http://peer.berkeley.edu/lifelines/repngamodels.html), have contributed to the guidelines for 
selection of and the availability of records for use. However, as mentioned, the studies have been primarily 
2D or uniform scaling of all three-dimensional components. Scaling of records is usually accomplished by 
the amplitude scaling of records to a common intensity measure or spectral value, such as the first-mode 
spectral acceleration. Scaling several records to a single intensity is termed a stripe analysis, whereas 
completing a sweep through a larger IM range by scaling several records is termed incremental dynamic 
analysis (IDA).  
 
Incremental dynamic analysis (e.g., Vamvatsikos and Cornell, 2002) is used as the method of probabilistic 
seismic demand analysis in this paper.  IDA was previously applied to the three-dimensional analysis of 
steel frame buildings (Vamvatsikos, 2006). However, the focus of the study was on marginal demand 
models in each orthogonal building direction and reducing the uncertainty in predicting these demands 
through the use of a vector of intensities. This study does not attempt to reduce the dispersion of demand 
models from three-dimensional analysis by considering a vector of IMs. Rather, this study is focused on 
an optimal method for scaling records in three dimensions to reproduce the demand models obtained 
from a larger catalog of non-scaled records.  Possible byproducts of scaling in three dimensions are bias 
in the expected values, disparate scale factors in the orthogonal non-scaling directions, and accounting for 
spectral shape at more than one structural period. A typical bridge structure is selected for the 
investigation of the three-dimensional scaling of ground motion records for IDA usage in this paper. It is 
demonstrated that careful selection of records based on spectral shape information at the fundamental 
period in each bridge direction, or the independent scaling of records in each direction lead to the best 
agreement with un-scaled records. 
 

Bridge Model 

 
The Federal Highway Administration (FHWA) maintains a national bridge inventory 
(http://www.fhwa.dot.gov/bridge/nbi.htm).  Highway bridges are classified according to material type and 
structure type.  From the 2003 census of California bridges, 15670 (66%) bridges were constructed of 
either concrete or pre-stressed concrete.  The structural types included slab, stringer/multi-beam or girder, 
box beam or girder, and culvert.  A total of 10291 (43%) of the total are either box beam or girder or 
culvert type.  Additionally, from highway network studies specifically on the San Francisco Bay Area 
(Kiremidjian 2006), a total of 2640 bridges were further characterized by type, year built, number of spans, 
etc.  Of this subset, 1415 (54%) were reinforced concrete box beam, girder, or culvert, and 763 (29%) 
were single-column bent box girder bridges alone. Descriptions of the individual bridges used, typical of 
new designs in California, and their finite element model representations are described in previous studies 
on California highway bridges (Mackie and Stojadinovic 2005).  These bridges were described in terms of 
structural design parameters (such as column height, longitudinal reinforcing ratio, soil properties, etc).  
For this study, a single bridge configuration is selected from this previous study. The highway overpass 
bridge has two equal continuous box-girder spans (L = 27.4m), a single bent (Ht = 9.1m) with a single 

column (Dc = 1.14m) continuing into an integral pile shaft foundation, simulated soil response through 

nonlinear p-y springs located along the pile shaft length, and a simplified abutment model with longitudinal 

(10cm gap) and transverse components.  The column has 2% longitudinal steel and 1% transverse steel 
reinforcement ratios. The bridge is assumed to be on a cohesionless sand site with uniform soil profile 
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properties.  The water table was assumed to be below the base of the pile shafts. 
 
The bridge was designed according to Caltrans’ Seismic Design Criteria (Caltrans 2004) for reinforced 
concrete bridges.  Consistent with the displacement-based design approach used by Caltrans for new 
bridges, it was assumed that reinforced concrete columns developed plastic hinges in flexure rather than 
experienced shear failure. The bridge deck was designed as a typical Caltrans reinforced concrete box 
girder section for a three-lane roadway.  The nonlinear engine selected for modeling was the PEER 
OpenSees (http://opensees.berkeley.edu) platform.  Bridge columns, pile shafts, and deck elements are 
modeled using three-dimensional elements with fiber cross-sections, including shear deformations. The 
circular column cross-sections have perimeter longitudinal reinforcing bars and spiral confinement. 
Several modeling improvements were made above and beyond those listed in Mackie and Stojadinovic 
(2005).  Specifically, softening in the steel constitutive model is no longer accomplished by a linear 
softening backbone curve. Rather, a material that takes into account low-cycle fatigue using a rudimentary 
rainflow counting method is incorporated (Uriz 2005). The properties of the constitutive model were 
customized for reinforcing bars based on experimental low-cycle fatigue tests by Brown and Kunnath 
(2004).  
 
An abutment model was also incorporated in the bridge longitudinal and transverse directions. This model 
is a simple derivative of the more complex spring model used in Mackie and Stojadinovic (2006). The 
longitudinal direction has a stiffness derived from the series response of bearing pads between the deck 
and stemwall and the longitudinal response of the backwall/fill/pile system.  The elastomeric bearing pads 
underneath each of the box girder webs are modeled explicitly by the introduction of an array of elements 
in the bridge transverse direction that physically account for the width of the box.  The bearing pad 
elements are interfaced with another transverse array of elements using spring constants derived from 
Caltrans SDC recommendations for longitudinal response derived from large-scale experimental tests.  
The transverse direction was simplified in this study to include the same bearing pads acting in series with 
a stiffness of the backfill/pile system modified by wing wall participation factors. Details of the abutment 
model are provided in Mackie and Stojadinovic (2006).  The shear key model is not included in this study.  
 

 
Figure 1.    Mode shape of fundamental transverse 

period (T1=1.19 sec). 

 
Figure 2.    Mode shape of fundamental longitudinal 

period (T2=0.91 sec). 

 
The longitudinal response of the abutment is not mobilized until gap closure; however, the transverse 
direction is initially restrained.  Nevertheless, the transverse direction is more flexible in this model, as 
indicated by the first two mode shapes of the bridge. The fundamental transverse (T1 = 1.19 sec) mode 

shape is shown in Figure 1, and the fundamental longitudinal (T2 = 0.91 sec) mode shape is shown in 

Figure 2. The separation of primary modal response in each of the bridge directions makes it possible to 
scrutinize ground motion scaling independently in each direction. The six nodes at the base of the column 
are below grade.  
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Probabilistic Seismic Demand Analysis 

 
Nonlinear dynamic time history analysis was performed on the bridge using bins of recorded ground 
motion acceleration time histories.  Two orthogonal lateral components and a single vertical component of 
each recorded ground motion were applied simultaneously to the three-dimensional bridge model. 
Probabilistic seismic demand analysis (PSDA) was performed using both the cloud and incremental 
dynamic techniques. PSDA and details of each method are outlined in more detail in Mackie and 
Stojadinovic (2005). In summary, the cloud method applies a larger catalog of unscaled ground motion 
records collected into magnitude-distance bins to the bridge. Incremental dynamic analysis describes a 
general technique for scaling of ground motions to common earthquake intensities (Vamvatsikos 2002). 
For each analysis performed, the maximum response quantity of interest is retained. A statistical 
relationship between these peak response quantities and a measure descriptive of the ground motion 
intensity is sought.  The PEER center designates the response measures as engineering demand 
parameters (EDPs) and earthquake intensity descriptors as intensity measures (IMs). The relationship 
between IM and EDP is denoted a probabilistic seismic demand model (PSDM). 
 
The IM used in this paper is the spectral acceleration of a 5% viscously damped single-degree-of-freedom 
system at a specified period. Sa(TT) is defined as the spectral acceleration at the fundamental transverse 

period (T1) computed for the ground motion component in the bridge transverse direction. Sa(LL) is the 

spectral acceleration at the fundamental longitudinal period (T2) in the longitudinal direction. The only EDP 

considered in this paper is the maximum tangential drift ratio (∆) of the column.  The tangential drift ratio is 
defined as the larger of the column displacements above and below the column inflection point, 
normalized by the respective distances of the locations of maximum displacement to the inflection point.  
The location of the inflection point moves during transient analysis; therefore, it is necessary to calculate 
the drift ratio at each time step. The baseline results used in this paper against which all ground motion 
scaling results are compared is based on the cloud analysis method. The same seven ground motion bins 
used in Mackie and Stojadinovic (2006) are used in this study.  
 
Ten different ground motion scaling strategies were employed for comparison to the cloud analysis 
results. The scale factor applied to the bridge transverse and longitudinal directions are listed in Table 1. 
Also listed in the table are the parameters describing the marginal best fit relationship in each bridge 
direction.  The best fit (median) is assumed to be of a power-law form, have constant log dispersion, s, 
and the distribution of EDP conditioned on IM is lognormal. The method designated as IDA 1 is the 
traditional IDA approach of scaling all components of a record to Sa(T1). In this case, the primary mode of 

response for the first mode is transverse; therefore, the single value of Sa(TT) is used for scaling. The 

scaling methods designated as IDA 2, 3, and 6 are examples of spectral combinations, and IDA 5 is an 
example of scaling to a vector of IMs. The evolution of the different scaling strategies is evident when 
plotting families of intensities in the Sa(TT)-Sa(TL) plane, as shown in Figure 3. The traditional transverse 

(IDA 1) and longitudinal (IDA 8) scaling strategies are shown in the upper-right pane of the figure. The 
spectral combinations are compared in the lower two panes of the figure. For the IDA 5 case, all EDP 
realizations fall on the vertical line through each point in the upper-left pane. The data points from cloud 
analysis are also included for comparison. It should be noted that the range of intensities considered for 
the IDA analyses were intentionally selected to coincide with that from cloud analysis. It was not an 
intention of this study to include the effects of collapse. 
 
A pitfall unique to the three-dimensional seismic analysis of structures is scaling the orthogonal 
component disproportionately even when considering epsilon for the direction under consideration. The 
concept is illustrated for the FAR (Northridge) record in Figure 4. The top pane shows the transverse 
response spectrum as compared to the Abrahamson and Silva attenuation relationship (Abrahamson and 
Silva, 1997). The transverse component is a negative epsilon record and is scaled up to reach the median 
spectrum from the attenuation relationship.  However, the orthogonal component (longitudinal direction) is 
a positive epsilon record that reaches spectral accelerations close to 1.5 g when scaled by the same 
amount as the transverse record.  The relationship between epsilon values is therefore an important 
quantity and is listed for the randomly selected IDA records along with the epsilon value in each direction 
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in Table 2. Another issue pertaining to nonlinear dynamic time history analysis (not unique to 3D) is 
numerical instability exhibited by structures subjected to records with large scale factors. This is an issue 

not necessarily addressed by the εL/εT ratio. Therefore, scale factors are also listed in Table 2. These 

scale factors are maxima and minima over all the scaling strategies; therefore, individual records can be 
evaluated. For example, the A-KOD record (Livermore earthquake) has large scale factors and is in part 
the cause of numerous numerical convergence or instability issues. Individual time history results with 
numerical instabilities were removed when generating PSDMs.  
 
Table 1.     Summary of analysis method scale factors and resulting spectral acceleration versus 

tangential drift ratio PSDM marginal distribution parameters (
    
ln ∆( )= A+ B ln IM( )+σε ). 

 
Method Transverse scale 

factor 
Longitudinal scale 

factor 
Transverse 

marginal (A, B, σσσσ) 

Longitudinal 

marginal (A, B, σσσσ) 

Cloud 2 2 -6.05, 1.04, 0.19 -5.69, 0.88, 0.16 

IDA – 1 Sa(TT) Sa(TT) -6.79, 1.16, 0.24 -6.58, 1.02, 0.22 

IDA – 2 
    
Sa(TT ) + Sa(LL )( ) 2  

    
Sa(TT ) + Sa(LL )( ) 2  -6.66, 1.14, 0.21 -6.08, 0.93, 0.16 

IDA – 3 
    

Sa(TT )2 + Sa(LL )2  
    

Sa(TT )2 + Sa(LL )2  -6.45, 1.10, 0.16 -5.96, 0.91, 0.13 

IDA – 4 
    Sa(TT )      Sa(TT )  -6.73, 1.15, 0.24 -6.56, 1.01, 0.23 

IDA – 5 Sa(TT) Sa(LL) -6.60, 1.12, 0.24 -6.07, 0.93, 0.12 

IDA – 6 
    

Sa(TT )Sa(LL )  
    

Sa(TT )Sa(LL )  -6.73, 1.15, 0.23 -6.15, 0.94, 0.16 

IDA – 7 Sa(TL) Sa(TL) -6.81, 1.17, 0.26 -6.25, 0.95, 0.15 

IDA – 8 Sa(LL) Sa(LL) -6.67, 1.14, 0.21 -6.05, 0.92, 0.13 

IDA – 9 
    Sa(TL )      Sa(TL )  -6.81, 1.17, 0.24 -6.17, 0.91, 0.17 

IDA – 10 
    Sa(LL )      Sa(LL )  -6.69, 1.15, 0.22 -5.98, 0.91, 0.15 

 
 
Table 2.     Ground motions used for (randomly chosen record) IDA analysis (IDA = 1 to 10), including 

epsilon values and scale factors in each direction. 
 
Bin Motion εεεε(LL) εεεε(TT) εεεε(LL)/εεεε(TT) SFmin SFmax 

kLMSR HCH 1.686 0.974 1.731 1.5 4.3 

 LOS 0.89 -0.208 -4.279 1.5 6.1 

kLMLR A-ELC -0.011 1.108 -0.010 5.2 10.5 

 SLC 1.173 1.428 0.821 2.4 4.1 

kSMSR A-KOD 0.279 1.371 0.204 6.3 18.3 

 H-CHI 1.533 0.799 1.919 1.9 6.5 

kSMLR H-DLT 2.224 1.02 2.180 2.0 7.7 

 M-CAP 0.021 -0.265 -0.079 6.2 26.1 

I880_ida_1 Cclyd -0.364 -1.083 0.336 5.4 19.9 

 Andd -0.985 -0.415 2.373 4.3 9.2 

I880_ida_5 Gav -1.34 -1.29 1.039 4.5 8.1 

 Gil6 0.887 -0.185 -4.795 1.5 6.8 

I880_ida_9 Srtg -0.109 -0.399 0.273 1.9 4.6 

 Temb -0.999 -1.401 0.713 5.8 15.9 
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Table 3.     Ground motions used for (epsilon-selected record) IDA analysis (IDA = 101 to 110), including 
epsilon values and scale factors in each direction. 

 
Bin Motion εεεε(LL) εεεε(TT) εεεε(LL)/εεεε(TT) SFmin SFmax 

eLMSR G04 0.177 0.083 2.133 2.1 3.5 

 HDA 1.654 0.998 1.657 1.3 3.6 

eLMLR A2E 0.581 1.254 0.463 3.3 6.0 

 SLC 1.173 1.43 0.821 1.8 4.1 

eSMSR A-DWN 0.495 0.88 0.563 2.9 9.0 

 H-CHI 1.533 0.799 1.919 1.9 4.4 

eSMLR H-DLT 2.224 1.02 2.18 1.8 5.3 

 M-HCH 0.877 0.837 1.048 4.3 8.1 

eI880 Clyd 0.761 0.331 2.299 0.8 2.1 

 Srtg -0.109 -0.399 0.273 1.6 3.2 

eVN_1 Env1 0.667 0.751 0.888 1.2 2.9 

 Vnuy 0.534 0.574 0.93 1.4 2.2 

eVN_2 Whox 0.701 0.874 0.802 1.9 3.3 

 Glen 1.898 1.514 1.254 1.3 3.0 

 

 
Figure 3.  Evolution of IDA scaling options looking at 

both transverse and longitudinal 
intensities. 

 
Figure 4.  Longitudinal and transverse response 

spectra comparison of a negative εL/εT 

record (FAR - Northridge). 

 
Results 

 
Standard PSDMs are plotted for several of the ground motion scaling strategies. Marginal PSDMs for the 
traditional scaling approach (IDA 1) are shown in Figure 5 for the transverse bridge direction and Figure 6 
for the longitudinal direction. As is evident in both the scaling direction (transverse) and orthogonal 
direction (longitudinal), the IDA = 1 median is conservatively biased. This is a result observed by others 
when considering records chosen at random for the IDA analysis (Baker and Cornell, 2005; Haselton and 
Baker, 2006). The bias is larger in the orthogonal component than in the scaling direction as no attention 
was given to the resulting scale factors in the longitudinal direction. For comparison, a more refined 
selection of records was made to determine if the bias was attributable to the selection of records by 
epsilon. The resulting motions chosen, epsilon values, and the ratio of epsilon values are shown in 
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Table 3. The refined selection of records are designated as 101 for scaling type 1, 102 for scaling type 2, 
etc. As evidenced from the epsilon ratio, it is a good individual value for the selection of records. A 
negative sign implies the longitudinal and transverse components fall on opposite sides of the attenuation 
median and therefore, scale factors may be problematic. Extremely large (> 10) or small (< 0.1) values 
indicate that the longitudinal and transverse motions are dominant, respectively. A magnitude close to 1 
and a positive sign is therefore a desirable target to minimize issues when scaling orthogonal records. 
 

 
Figure 5.  PSDM showing Sa(T1)-∆ marginal in the 

transverse direction for IDA scaling 
option 1. 

 
Figure 6.  PSDM showing Sa(T2)-∆ marginal in the 

longitudinal direction for IDA scaling 
option 1. 

 

 
Figure 7.  PSDM showing Sa(T1)-∆ marginal in the 

transverse direction for IDA scaling 
option 8. 

 
Figure 8.  PSDM showing Sa(T2)-∆ marginal in the 

longitudinal direction for IDA scaling 
option 8. 

 
Both the original set (IDA 1) and the refined set (IDA 101) of records are plotted in the marginal PSDMs 
shown in Figure 5 (transverse) and Figure 6 (longitudinal). As expected, the bias is significantly reduced 
using the more carefully selected set of records. A similar trend is evident when using the fundamental 
period in the longitudinal direction as the scale factor. Figure 7 shows the transverse response (the 
orthogonal component in this case) and Figure 8 shows the longitudinal response. Interestingly, the 
longitudinal PSDMs are un-conservatively biased; however, the plots are in linear space and are 
essentially equal. However, of greater interest in this study is whether using more than one period/intensity 
for scaling improves the agreement with the cloud analysis method. This comparison is made with the 
vector IM of IDA scaling strategy 5.  The marginal PSDMs in the transverse and longitudinal directions are 
shown in Figure 9 and Figure 10, respectively. Unlike the transverse (IDA 1) and longitudinal (IDA 8) 
scaling strategies, the constant intensity stripes are evident in both the transverse and longitudinal 
directions. Regardless of what IDA record set was used, there is little to no bias in the median values. It 
should be noted that IDA 5 changes the original relative scaling between orthogonal components that is 
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maintained by other strategies. 
 
A further means for comparing the different scaling strategies with the cloud results makes use of a vector 
of IMs when formulating the PSDM. The vector of IMs was not selected in order to reduce the dispersion 
of the demand model, rather to see whether the median response was biased based on different scaling 
strategies. An example of the vector PSDM (now resulting in a surface) generated for IDA 1 is shown in 
Figure 11. To avoid redundancy, a scaling-independent IM is used as the second IM in the vector. For the 
IDA 1 and 101 cases, the longitudinal IM Sa(TL) is normalized by Sa(TT), the IM used to scale the records. 

A best-fit plane was derived using least squares for each scaling method. The plane for the cloud method 
and the data points for IDA 1 and IDA 101 are shown in the figure. The best-fit (median square-root-sum-
of-squares of the tangential drift ratio, ∆SRSS) plane is described by four parameters, similar to those in 

Table 1. However, there is a coefficient for both Sa(TT) and Sa(TL). For the bridge considered in this study, 

larger demands were observed in the transverse direction and therefore, the magnitude of the Sa(TT) 

coefficient was larger than that of Sa(TL).  

 

 
Figure 9.  PSDM showing Sa(T1)-∆ marginal in the 

transverse direction for IDA scaling   
option 5. 

 
Figure 10.  PSDM showing Sa(T2)-∆ marginal in the 

longitudinal direction for IDA scaling 
option 5. 

 
 

 
 

Figure 11.  PSDM showing Sa(T1) transverse- and 

Sa(T2) longitudinal-∆SRSS for IDA scaling 

option 1. 

 
Figure 12. PSDM showing ∆SRSS and SRSS of two 

IM quantities used in 3D PSDM. 

 
Due to the difficulty of visualizing several planes for each scaling strategy, comparisons were drawn 
between scaling choices by calculating the residuals between the plane derived for each strategy and the 
plane derived from cloud analysis. Scaling strategies 3, 6, and 7 have the smallest residuals. Note, 
however, that it was not possible to evaluate strategy 5 in this manner because both IMs are dependent. 
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Therefore, a spectral combination was used to develop the ∆SRSS PSDM with only a scalar IM, the SRSS 

of Sa(TT) and Sa(TL)/Sa(TT). The resulting PSDMs for scaling strategy 5 are shown in Figure 12. 

 
Conclusions 

 
A typical reinforced concrete highway bridge is used in this study to investigate the effect of different 
ground motion scaling strategies on probabilistic seismic demand models for the global drift ratio 
response parameter. The bridge exhibits distinct transverse and longitudinal modes of response in the first 
two modes, respectively. Of the ten incremental dynamic analysis three-dimensional ground motion 
scaling techniques investigated in this paper, the optimal candidates were those that incorporate a 
spectral ordinate or spectral information from both the longitudinal and transverse directions (2, 3, 5, and 
6). Results of scaling ground motions were compared to cloud demand analysis using a larger catalog of 
unscaled records. Random selection of records for IDA use leads to a bias in the marginal probabilistic 
seismic demand models in each direction. This is alleviated in part by selecting records based on the ratio 
of epsilon in the longitudinal direction to epsilon in the transverse direction. Values of this ratio close to 
positive one are optimal in reducing scaling irregularities between orthogonal ground motion components 
in three dimensions. However, the sign of each individual epsilon component should still be scrutinized to 
alleviate the bias due to the use of negative epsilon components. The choice of records with εL/εT in the 

vicinity of +1 is also beneficial in reducing the maximum scale factors required for achieving target 
intensity levels for all ground motion scaling strategies considered in this paper. A second option for 
scaling records that does not introduce bias for the structure considered in this study is the separate 
scaling of components in the transverse and longitudinal directions. This approach is akin to scaling 
records to a vector of intensities and results in greater control over the range of scale factors necessary in 
the non-scaling direction for other scaling strategies. 
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