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ABSTRACT 

 

For the evaluation of the seismic performance of retrofitted reinforced concrete columns, an inelastic 
repair element is suggested. The suggested repair element is capable of reflecting the structural 
intervention (repair or retrofitting) in terms of the direct modelling of the intervention. The repair element, 
having both birth and death time, can be activated within the user-defined time intervals of interest during 
both static and dynamic time-history analysis. Comparative evaluation is conducted for reinforced 
concrete column tests which are repaired and retrofitted. Analytical predictions obtained with the proposed 
repair element display reasonably good correlation with test results. It is therefore encouraged that the 
new element can be used for the healthy seismic evaluation of reinforced concrete columns being 
repaired and retrofitted. 
 

Introduction 

 
One of the most fundamental observations in the past earthquakes is that the earthquakes have random 
nature and earthquake magnitudes are inversely proportional to their likelihood of occurrence. Structures 
constructed in seismic zones can thus be expected to undergo numerous earthquakes that may be either 
greater or lesser intensity prior to being subjected to a design level earthquake. Moreover, those 
structures may experience successive earthquakes within a certain time interval. For example, following 
the Kocaeli earthquake on 17 August 1999, another Duzce earthquake on 12 November 1999 (three 
months later) occurred in the area of Duzce and Bolu, northwestern part of Turkey, which is located in 
near of Kocaeli  (Sucuoglu 2002, Uckan et al. 2002). This implies that the survived lifeline structures such 
as bridges under the former event may have damage or collapse potential under the latter event. 
Therefore, it is of utmost importance that seismic analysis of such structures should account for the prior 
damage effect, particularly when the structures are being repaired or retrofitted after the former event. 
Otherwise, erroneous response characteristics for such repaired or retrofitted structures can be estimated 
and thus may prejudice the stability assessment of such structures under the latter event. 
 
In view of the above, to assess the seismic performance of reinforced concrete members being repaired 
and retrofitted after experiencing prior earthquake damage, repair element is proposed. This repair 
element having both birth and death time can freely be activated (or deactivated) within the user-defined 
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time intervals of interests during static and dynamic time history analysis. In turn, an analysis with the 
repair element can continually be performed with increased characteristics due to repair or retrofitted 
measure while degraded strength and stiffness of members (or structures) experienced the initial loading 
history and prior earthquake for static and dynamic time history analysis, respectively are kept as they are. 
This allows the repair element to reflect the realistic behavior of such members (or structures) being 
repaired or retrofitted. Derivation and verification of the element are discussed hereafter. 
 

Repair Element and Program ZeusNL 

 
Derivation of Repair Element 

 
Repair element having both birth and death time is proposed for the assessment of seismic behavior of 
reinforced concrete members experienced prior damage. The element is derived from the inelastic cubic 
formulation developed by Izzuddin and Elnashai (1993a, b). The formulation is capable of modeling 
material inelasticity effects in terms of a detailed consideration of section type and constitutive relationship 
of the material. In addition, the effect of large displacement is also included in the formulation. Since the 
formulation contains all the salient features needed for the current development, the inelastic cubic 
formation proposed by Izzuddin and Elnashai is thus adopted for the development of the repair element. 
 
Four assumptions are made in the derivation of the cubic formulation, which are 1) warping strains due to 
nonuniform torsion are ignored, 2) plane sections remain plane, 3) shear strains due to flexure are 
ignored, and 4) shear center and section centroid are coincident. The above four assumptions allow strain 
state within a cross section to be determined only by four generalized strains, which are centroidal axial 
strain, rate of twist, and curvature strains about the two principal axes. The four generalized strains will be 
discussed hereafter. 
 
Six local degrees of freedom are employed for the three dimensional inelastic cubic formulation as shown 

in Fig. 1. Local displacement vector c

~

u  and local force vector c

~

f  of an element is expressed in terms of 

the six local degrees of freedom, which is given by, 
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Figure 1.  Local freedoms of inelastic cubic formulation. 

 
Since the formulation is intended to represent short lengths of members which can be assumed straight, 
variables for imperfections are not taken into account. Depicted in Fig. 2 is the movement of a point along 
the element reference axis. The movement of a point can be described by the shown four displacement 
values that are defined by interpolation functions given by, 
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Figure 2. Movement of a point along the element.     Figure 3. Position of two Gauss integration sections. 
 
Since the centroidal axial strain is assumed constant along the element length, no interpolation function is 

required for the axial displacement u(x) . This assumption that axial force is constant along the element 

length may be violated for the presence of material plasticity. However, if the element is used to model 

short lengths of inelastic members as mentioned above, the axial force variation is insignificant and hence 

the assumption can be reasonable. The rest three generalized strains are calculated from the assumption 

of small local deformation, which are given by, 
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where, xc,ε , yκ , zκ , and ς  represent the centroidal axial strain, the curvatures about the two principal 

axes and the rate of twist, respectively.  

 
In order to derive the relationship between the four generalized strains and the element freedoms, Eqs. 3, 
4, and 5 is combined with Eq. 6. This leads to the expressions given below, 
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The next stage is to establish the relationship between the generalized strains and the generalized 
stresses. Since the relationship cannot be established explicitly due to the presence of material plasticity, 
the integration of the virtual work equation is carried out numerically for the calculation of the element 
forces. Since the element can only be used to model short lengths of members as previously mentioned, 
the integration at two Gauss sections is employed. The location of each Gauss section is depicted in Fig. 
3 and is given by, 
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Accordingly, the generalized strains at both Gauss sections can be represented by a matrix, su  which is 

determined directly from Eqs. 7 and 8. The matrix is given below, 
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Each Gauss section is divided into a number of user defined areas across which strains and stresses are 
monitored. If the effect of shear strains on material plasticity is ignored, only direct strains are required at 
the monitoring points, which are given as below, 
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where, gm,e  is the direct strain of monitoring point m at Gauss section g, and siu  is the generalized strain 

matrix defined in Eq. 9. 

 
In order to establish the direct stresses corresponding to the direct strains at the monitoring points, a 
uniaxial stress-strain relationship is employed as given in Eq. 12. In Eq. 12, f represents the stress-strain 
relationship of the material model used and any material model can then be applied. 
 

( )gm,gm, efs =                                                                   (12) 

 

where, gm,s  represents the material stress of monitoring point m at Gauss section g. 

 

Whereas the bending and axial generalized stresses at Gauss section are calculated from the direct 
material stresses, the relation between the torsional generalized stress and strain is based on the elastic 
torsional rigidity constant. Thus, 
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where, mA  is the area of monitoring point m, im,d  is defined in Eq. 11 and the upper limit n in Eq. 13 

represents the number of monitoring points at a Gauss section. Once the generalized stresses are 

determined at the two Gauss sections, the element local forces can be evaluated in terms of numerical 

integration of the virtual work equation. Therefore, 
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where cT  is a 246 ××  matrix representing weighted first derivatives of generalized strains with respect to 

local displacements.  

 

The local tangent stiffness ck  can be obtained from the differentiation of Eq. 15 and is given by, 
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where fk  and sk  are determined from Eqs. 17 and 18 respectively as given below, 
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where F is the axial force and all other terms of both fk  and sk  matrices are zero. ktm,E  in Eq. 18a 

represents the material tangent modulus of monitoring point m at Gauss section k and is required in the 

element tangent stiffness calculation needed for the iterative solution procedure. The material tangent 

modulus is given as below, 
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In view of the above, a repair element is proposed for the purpose of seismic performance evaluation of 
reinforced concrete members and structures that have experienced prior damage. The new repair 
element incorporates both birth and death time and thus it can be either activated or deactivated within 
user-defined time intervals of interests during analysis. The time intervals of interests can freely be defined 
by user within the new element as birth and death time. Accordingly, the new element is capable of 
modeling any parts of members and structures with different time intervals of interests in both static and 
dynamic time-history analyses. This allows that increased or decreased response characteristics due to 
add or subtracted members respectively are physically reflected during the analyses. Having defined both 
birth and death time, the new element force and stiffness calculation is designed to start at birth time and 
stop at death time. The calculated new element force and stiffness at each time step are transformed to 
global system element level which leads to global structural system level in that time step. The 
incorporation of the new element in a general nonlinear procedure requires the application of three 
transformations between local element system to global structural system (Izzuddin 1991). The first is a 
geometric transformation establishing the local element displacements corresponding to a set of global 
displacements. The second is a transformation of the local element forces to global forces with the local 
forces calculated from local displacements. The two transformations establish a relationship between 
global forces and global displacements. The final transformation associated with local tangent stiffness 
matrix establishes the global tangent stiffness matrix needed for the iterative solution procedure. A 
detailed description regarding the three transformations is addressed in the reference (Izzuddin 1991). 
The general procedure for the calculation of the new element force and stiffness is schematically 
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summarized in a form of flow chart as shown in Fig. 4. The new repair element has been implemented 
into ZeusNL (Elnashai et al. 2001), which is discussed hereafter. 
 

Define the new repair element with both birth and death
time

Birth time     Current timestep     Death time≤≤≤≤≤

Calculation of curvature and axial strain corresponding to

local displacement increment at the two Gauss sections in

the current time step (equation 7(a), (b), (c), (d))

Yes

No Perform the

analysis for
other elements

Read the stress-strain relationship of the material model

used

Calculation of stress area in each monitoring point and

distance from the neutral axis

Calculation of strain in each monitoring point at each

Gauss section (equations 9, 10 and 11)

Calculation of stress in each monitoring point at each

Gauss section (equations 13 and 14) using the material
model (f in equation 12)

Calculation of local forces for repair element (equation 15)

Repeat for the two
Gauss sections

Repeat for

the
number of

monitoring

points

Repeat for

the material

models

used

Calculation of local tangent stiffness terms due to axial
force (equation 17(a), (b))

Calculation of stress area in each monitoring point and
distance from the neutral axis

Calculation of tangent stiffness modulus (equation 19)

corresponding to the strain increment of current time step
using the material model (f in equation 12)

Calculation of section stiffness at each Gauss section

(equation 18(a), (b))

Calculation of the element stiffness using the above

section stiffness

Repeat for

the

number of

monitoring
points

Repeat for
the material

models

used

Repeat for the two

Gauss sections

  
 

Figure 4.   General procedure for the calculation of the new element force and stiffness. 
 
Program ZeusNL 

 
The new repair element has been implemented into the nonlinear fiber element static and dynamic 
analysis program ZeusNL (Elnashai et al. 2001). The program has been developed for the nonlinear 
analysis of two- and three-dimensional steel, reinforced concrete and composite structures, taking into 
account the effects of both geometric nonlinearity and material inelasticity. A detailed description of 
ZeusNL is available in the ZeusNL manual (Elnashai et al. 2001). 
 

Verification of the New Element 

 
To verify the new element, the analytical results obtained with ZeusNL incorporating the new element are 
compared with experimental data. The test specimens used for the comparison are reinforced concrete 
columns being repaired and retrofitted by steel jackets of part and full height. Six large scale reinforced 
concrete column tests were conducted by Chai et al. (1991) to investigate the improved performance of 
the columns using steel jacketing. The columns were considered to be 0.4 scale models of a prototype 
1524 mm diameter bridge column, being 610 mm diameter and 3657 mm height. The test columns were 
repaired and retrofitted with steel jackets. Steel jackets for the columns were fabricated from 4.76 mm 
thick hot-rolled steel, providing a volumetric confinement ratio of 0.031. The length of steel jacket was 
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selected to be 1219 mm to ensure that the moment demand immediately above the jacket did not exceed 
75 percent of the uncased flexural capacity. Two specimens, 1R and 3R were selected for comparative 
verification of the new element. Material properties and applied axial force for the selected columns, and 
the yield strength of steel jacket are summarized in Table 1. 
 

Table 1. Material properties of the selected columns and yield strength of steel jacket (Chai et al. 1991). 
 

Longitudinal  
reinforcement 

Transverse  
reinforcement 

Steel jacket Speci- 
men 

Test  
remark 

Concrete 
strength 
(MPa) 

Applied  
axial force 

(kN) Yield strength(MPa) Yield strength(MPa) Yield strength(MPa) 

1R Repair 37.9 308 

3R Retrofit 37.8 
1779 313 349 

322 
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A A
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inelastic
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Figure 5.   Dimensions, cross-section details and analytical models of test specimen (Chai et al. 1991). 
 
Shown in Fig. 5 are column dimensions and section details of the columns tested by Chai et al. (1991). 
For the investigation of the column response, use is made of ZeusNL. Two different modeling approaches 
are utilized for the estimation of response characteristics and for the validation of the new element. Firstly, 
seven exiting cubic inelastic elements are employed with shorter elements at the base of columns and 
longer elements toward their top. Such an arrangement allows potential plastic hinge zones to be 
accurately captured. Circular cross-section is employed to model the column cross-section across which 
200 monitoring points are defined to account precisely for the inelastic response of the columns. 
Secondly, the new elements are employed for the column lengths of 1219 mm being repaired or retrofitted 
by steel jacket and added to the first model, as depicted in Fig. 5. Circular steel hollow section with inner 
diameter corresponding to the column diameter is employed for the new elements. The new elements are 
modeled to activate only during the second loading history, which in turn the new elements are deactivated 
during the first loading history. This allows increased characteristics due to repair or retrofitting by steel 
jackets to be realistically reflected to the column response experienced the first loading history. 
 

1657



-360

-180

0

180

360

-240 -160 -80 0 80 160 240

Displacement (mm)

L
a
te

ra
l 

fo
rc

e
 (

k
N

)

1R_Exp.(Chai et al. 1991)

-360

-180

0

180

360

-240 -160 -80 0 80 160 240

Displacement (mm)

L
a
te

ra
l 

fo
rc

e
 (

k
N

)

1R_Analysis

 
Figure 6.  Comparison of hysteretic response for repaired specimen 1R. 
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Figure 7.   Comparison of hysteretic response for retrofitted specimen 3R. 

 
Fig. 6 shows comparison of load-displacement hysteretic response for specimen 1R repaired by steel 
jacket. Experimental results show the strength degradation as ductility is increased and analytical results 
incorporating the new element exhibit similar trend. However, the analytical results overestimate the 
energy dissipation capacity and hence pinching effect in comparison with the experimental results. This 
may be attributed to bond failure and shear failure in the column-footing interface observed in the 
experiment, which are not taken into account in the analysis. Shown in Fig. 7 is comparison of load-
displacement hysteretic response for retrofitted specimen 3R. The experimental results show no strength 
degradation and hence stable response as ductility is increased. The analytical predictions incorporating 
the new element display similar trend and is well-correlated with the experimental results in overall 
inelastic response.  
 
Another comparative study has been conducted for reinforced concrete column tests. Priestley et al. 
(1994a, b) carried out eight circular column tests in order to establish the effectiveness of full height steel 
jackets as a retrofit measure. Columns were designed at 0.4 scale models of a prototype and the test set 
up was designed to subject the columns to axial loading and cyclic shear forces under reversed curvature, 
with the point of contra-flexure occurring at the column mid-height. Section dimensions and loading 
conditions are shown in Fig. 8. Two retrofitted specimens, C2R and C6R were selected as representative 
cases. Material properties and applied axial forces for the chosen columns are provided in Table 2, 
together with steel jacket details.  
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Figure 8.   Cross-section details and loading conditions (Priestley et al. 1994a). 

 
Table 2. Material properties and applied axial force for the selected columns (Priestley et al. 1994a). 

 

Longitudinal  
reinforcement 

Transverse  
reinforcement 

Steel jacket 
Speci- 
men 

Aspect  
ratio 
M/VD 

Concrete 
strength 
(MPa) 

Applied  
axial force 

(kN) Yield strength(MPa) Yield strength(MPa) 
Yield strength  

(MPa) 
Thickness 

(mm) 

C2R 2.0 34.0 324 359 348 4.76 

C6R 2.0 40.0 
598.5 

469 324 286 3.18 

 
ZeusNL is again utilized for the comparative studies. As in the case of the former analytical modeling 
approaches, existing cubic inelastic elements are employed for as-built columns, while the new elements 
are employed for the full height of columns to reflect the steel jacket retrofitting using circular steel hollow 
section with inner diameter corresponding to the column diameter. Since the experimental study is dealing 
with retrofitting, the new repair elements employed are activating from the beginning of loading history. In 
the analytical modeling of columns, shorter elements at the top and base of columns and longer elements 
toward their centers are employed to accurately capture the potential plastic hinge zones at the two critical 
regions of columns. Other assumptions with regard to material models, etc. are the same as those used 
for the former comparative studies. Fig. 9 shows comparison of hysteretic response for specimen C2R. 
Experimental results exhibit stable and ductile response and thus no strength and stiffness degradation is 
observed. The analytical results also shows a similar response in terms of both strength and stiffness. 
Nevertheless, there is a slight difference in energy dissipation capacity. This can be attributed to the fact 
that the aspect ratio of the columns is two and thus the response of columns can be affected by shear 
which is not taken into account in the current analysis. Notwithstanding, overall response between 
experiment and analysis is reasonably correlated. Shown in Fig. 10 is comparison of hysteretic response 
for specimen C6R. Similar response as for the case of C2R is exhibited. 
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Figure 9.   Comparison of hysteretic response for specimen C2R. 
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Figure 10.   Comparison of hysteretic response for specimen C6R. 

 
In all, the verification examples above demonstrate that the new element proposed in this paper gives 
reasonably good predictions of column response being repaired and retrofitted by steel jackets. This 
indicates that the current development is promising for the seismic assessment of reinforced concrete 
column members, being repaired and retrofitted by steel jacket after experiencing a prior earthquake 
damage. There is certainly room for more improvements as various material models, such as FRP and 
GFRP become available in ZeusNL.  
 

Conclusions 

 
Repair element having both birth and death time has been suggested and implemented in the nonlinear 
static and dynamic analysis program ZeusNL. The new repair element can be simulated in static and 
dynamic time-history analysis and activated within the user-defined time intervals of interests. Verification 
of the new element was achieved in terms of comparisons with reinforced concrete columns being 
repaired and retrofitted subjected to cyclic load reversals. The comparison showed that the analytical 
predictions incorporating the new element gave a reasonably good correlation with experimental results in 
terms of both strength and stiffness. In short, the present development allows the increased 
characteristics due to repair and retrofitting to be realistically reflected on the response of members and 
structures experienced prior damage and thus is expected to give a feasible information with regard to the 
seismic upgrading. Meanwhile, the current study is limited for RC members, particularly columns and piers 
repaired or retrofitted by steel jacket. Accordingly, more valuable improvements and verifications of the 
new element are expected when various material models, such as FRP and GFRP become available in 
ZeusNL. 
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