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ABSTRACT 

 

This paper considers a prediction method for seismic damage of individual members in a steel moment 

frame that forms a sway mechanism. In the proposed prediction method, seismic damage is estimated 

without using seismic response analysis, based on seismic input energy on the frame and restoring force 

characteristics of the members. The energy is distributed to cruciform subassemblages, which are 

employed as unit elements in the method. Maximum deformation and cumulative plastic deformation of 

the members (beams and joint panels) are calculated as seismic damage by assuming that cruciform 

subassemblages deform due to the dissipation of the energy in specified situations, respectively. The 

applicability of the proposed method is confirmed through comparison with results of numerical analysis. 

 
Introduction 

 

Members of structures must be designed with larger ductility capacity than the demand (based on the 

predicted seismic damage), in seismic design that permits plastic deformation. Many researchers study 

design problems from this perspective. For example, Ogawa (Nov. 2000) presented a seismic design 

procedure for estimating the ductility demand of beams in strong column - weak beam steel frames. The 

theoretical solution is obtained with equivalent single-degree-of-freedom systems. However, Ogawa did 

not present the respective deformations of beams and joint panels. It is quite possible that, not only 

beams, but also joint panels yield under severe earthquake loads. In such a case, the damage of the joint 

panel influences the beam connected to it. Therefore, it is necessary to evaluate the damage of beams 

taking into account the damage of joint panels. 

 

The purpose of the present study was to propose a prediction method for the seismic damage of 

members (both beams and joint panels) in a steel moment frame that forms a sway mechanism. More 

specifically, the maximum deformation and cumulative plastic deformation of members are calculated by 

using seismic input energy on the frame and restoring force characteristics of the members, without 

employing earthquake response analysis. The seismic responses are varied considerably, because of the 

varied characteristics of individual earthquakes, even if the structure is the same. The calculated 

deformation approximates the average earthquake response in an attempt to represent the general 

behavior of the members during a severe earthquake. This paper demonstrates the accuracy of the 
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estimated deformations using a comparison with numerical results. We expect that the method will 

provide a fundamental understanding of the ductility demand of beams and joint panels. 

 
Subassemblage for Proposed Method 

 
Force-Deformation Relationship of Members 

 

In this paper, a moment steel frame that forms a sway mechanism is considered. A typical interior beam-

column subassemblage of the frame is shown in Fig. 1. The cruciform subassemblage consists of upper 

and lower half columns, left and right half beams, and a joint panel. The subassemblage is used as a unit 

element in the prediction method. Therefore, in the first instance the force-deformation relationship of the 

subassemblage and the members is formulated. 

 

The moments at a node that is an intersection point of column and beam centerlines are used in order to 

satisfy the equilibrium condition among the members as shown in Fig. 2 (Kuwahara, 1998). The sum of 

the column moments at the node, the sum of the beam moments at the node, and the joint panel 

moments at the node are equal, with 
 

 
    c
MU

* ++++cML
* ====bML

* ++++bMR
* ====pM* ==== M*  (1) 

 
where cM*U and cM*L are the moments of columns at the node, bM*L , bM*R are the moments of beams at 

the node, and the moment of the joint panel at the node pM*. Using the moment at the node M*, it is 

relatively straightforward to consider both the order of plastic hinge formation and the mechanism (beam-

hinging mechanism or joint panel mechanism). 

 
Inter-story drift angle R is defined as the total deformation in the subassemblage under the applied 

moment at the node. This deformation is divided into the column region, the beam region, and the joint 

panel as shown in Fig. 3: 
 

 
  
R==== cθθθθ

* ++++bθθθθ
* ++++pθθθθ

*  (2) 

 

where, cθθθθ *, bθθθθ * and pθθθθ * are the rotation at the node of the column region, the beam region and the joint 

panel, respectively. The rotation at the node of the beam region is equal to the rotations of the left and 

right beams: 
 

   bθθθθ
* ==== bθθθθ L

* ==== bθθθθ R
*  (3) 

 
Formulation of the moment and rotation at the node is described in the appendix. 
 

   
 Figure 1. Cruciform subassemblage. Figure 2. Column and beam moments at the node. 
 

 
 

Figure 3. Deformation in subassemblage. 
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The columns are elastic because the frame forms a sway mechanism, and the beams and the individual 

joint panels are elasto-plastic (represented by a bi-linear model here). The assumed force-deformation 
relationship of the members is shown in Fig. 4. In this figure, cK*, bK*L , bK*R and pK* are the initial 

stiffness of the column region, the left beam, the right beam and the joint panel. bααααL, bααααR and pαααα are the 

second stiffness of the left and right beams and the joint panel. bM*pL , bM*pR and pM*p are the full plastic 

moments at the node in the left and right beams and the joint panel. For simplicity, in this paper it is 

assumed that the formation of a plastic hinge in the left beam precedes the one in the right beam.  
 
Force-Deformation Relationship of Subassemblage 

 

The subassemblage is modeled as tetra-linear by connecting the members in series as shown in Fig. 4. 
M*1, M*2 and M*3 are moments at the node when these moments reach the first, second and third corner 

points, respectively. K1, K2, K3 and K4 are the stiffness of the model. 

 
Let us consider the order of plasticity in the members to formulate the model. bM*L and bM*R are derived 

from Eqs. 1 and 3. 
 

 

  
bML

* ==== bKL

bKL++++bKR

⋅⋅⋅⋅ M* ====bkL ⋅⋅⋅⋅ M*  (4) 

 

  
bMR

* ==== bKR

bKL++++bKR

⋅⋅⋅⋅ M* ====bkR ⋅⋅⋅⋅ M*  (5) 

 

 
Figure 4. Force-deformation relationship of members and subassemblage. 

 
When the plastic moment is reached at the left beam (right beam is elastic), M* can be derived. 
 

 

  

M*
====

bMpL
*

bkL

 (6) 

 

Until the moment reaches the full plastic value in the right beam, the left beam moment at the node 
increases according to the second stiffness. However, this increase is small, and M* is found by 

neglecting it. 
 

 
  
M* ==== bMpL

* ++++ bMpR
* ==== bMp

*∑∑∑∑  (7) 

 

The mechanisms of the subassemblage are formed when M*= pM*p or M*= ΣΣΣΣ  bM*p. M*1, M*2 and M*3 are 

given by the values from Eqs. 6 and 7 and pM*p in ascending order. 
 
When all of the members are elastic, the initial stiffness of the model is given by 
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M* ==== K1R ,  

    

K1 ====
1

cK*
++++

1

bKL
*

++++ bKR
*

++++
1

pK*

    

    
    
    

    

    
    
    

−−−−1

 (8), (9) 

 
The stiffness of the subassemblage is obtained by replacing the stiffness of the members that have 

formed plastic hinges with the second stiffness in Eq. 9. 

 
Prediction Method for Seismic Damage 

 
Seismic Input Energy 

 

It is widely recognized that seismic input energy on a frame is scarcely affected by the strength and the 

type of the restoring force. Hence, seismic input energy is given by assuming the magnitude of the 
earthquake at the time the frame is designed. Damage-causing earthquake input energy Edm is applied as 

seismic input energy (Ogawa Apr., 2000) in this paper. Edm is defined as the maximum response of the 

sum of elastic strain energy Ee and the energy dissipated by plastic deformation Ep. Kinematic energy is 

not included in this definition. 
 

 
  
Edm ==== Ee ++++ Ep(((( ))))

max
 (10) 

 
An example of the response of (Ee + Ep)/Edm is shown in Fig. 5. The maximum response of Ee + Ep (= 

Edm) subtracted by Ee stored when plastic deformation occurs last is Ep, as in Fig. 5. The value of Ee 

varies according to the deformation if the model of the frame is not elasto-plastic. The value of Ee is 

approximated to elastic strain energy when a mechanism is formed. 
 
 

  
Ee ≅≅≅≅ Ey  (11) 

 
A fishbone-shaped frame such as that shown in Fig. 6 is employed as it is the simplest model of a multi-

story frame. The fishbone-shaped frame consists of cruciform subassemblages. Considering seismic 
input energy on each story (each subassemblage in the fishbone-shaped frame), iEdm is defined as the 

sum of the elastic strain energy iEe and the energy dissipated by plastic deformation iEp of the i-th story of 

an n-story-high frame when Ee + Ep reach Edm. i = 0 represents the bottom of the column of the lowest 

story, as in Fig. 6. 
 

 
    
Edm ==== iEdm

i====0

n

∑∑∑∑  (12) 

 
  i
Edm ==== iEe ++++ iEp≅≅≅≅ iEy ++++ iEp  (13) 

 
For simplicity, this paper deals with a frame that has an optimum strength distribution in which the 

cumulative plastic deformations of all stories, except the lowest, are the same. Since the purpose of this 
study is not to investigate the damage to the column of the lowest story, the condition where 0Edm is 

known, is employed. As a result, iEdm is proportional to the strength of each story. 
 

 

  

iEdm = ir⋅i Edm
i=1

n

∑

1r + ⋅⋅ ⋅+ir + ⋅ ⋅ ⋅+nr = 1

1r

1Mp
*

= ⋅ ⋅ ⋅ = ir

iMp
*

= ⋅⋅ ⋅ = nr

nMp
*

 

 

 
  

 

 
 
 

 (14) 

 

iM*p is the moment at the node on the i-th story when the mechanism is formed and iEdm is derived as 

described above. In this case, behavior caused by interaction of each story is not considered, and hence, 

that each cruciform subassemblage is treated as a unit element for the prediction method. The subscript 
“i” is omitted in the following section. 
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 Figure 5. Example of energy response. Figure 6. Fishbone-shaped frame. 
 
Maximum Deformation 

 

When deformation of a subassemblage reaches a maximum, the deformations of component members 

usually reach maximum levels under a severe earthquake. In order to estimate the maximum deformation 

of members, we consider two kinds of processes that cause deformation of a subassemblage to reach the 

maximum, as shown in Fig. 7. One is a situation in which the subassemblage absorbs the maximum 

seismic energy as it deforms in one direction. The other is a situation where it absorbs a small amount of 

seismic energy after it deforms repeatedly in one direction. Generally, deformation of a reinforced 

concrete structure - when the degrading tri-linear model is used - reaches a maximum in the former 

situation, otherwise it is almost equal to the deformation in the latter situation (Nakamura 1998). 

Nakamura also stated that it is adequate to employ the corner point of the model when the structure 

reaches lateral strength in the inverse direction as a starting point in the former situation.  

 
When the subassemblage deforms in one direction, the response of Ee + Ep varies from one of the 

relative maximums to the next. This term is called a half-cycle. In order to estimate the maximum 

deformation, it is adequate to assume that the maximum increment of Ee + Ep during a half-cycle ΔΔΔΔ E1 is 

0.25Edm (Ogawa Jun., 2000). 

 

Based on the aforementioned description, the maximum deformation of members in the prediction 

method is calculated by assuming that the subassemblage deforms from the first corner point (the 

moment at the node is M*1) in the inverse direction while absorbing ΔΔΔΔ E1, as shown in Fig. 8. In this case, 

the subassemblage deforms over the first corner point by releasing the stored elastic strain energy. The 
maximum moment at the node M*max is calculated. 
 

 

    

Mmax
* ==== 2 ∆∆∆∆E1 ⋅⋅⋅⋅ K2 ++++ M1

*(((( ))))
2

∆∆∆∆E1 <<<< E2nd

Mmax
* ==== 2 ∆∆∆∆E1 −−−− E2nd(((( ))))⋅⋅⋅⋅ K3 ++++ M2

*(((( ))))
2

E2nd ≤≤≤≤ ∆∆∆∆E1 <<<< E3rd

Mmax
* ==== 2 ∆∆∆∆E1 −−−− E3rd(((( ))))⋅⋅⋅⋅ K4 ++++ M3

*(((( ))))
2

E3rd ≤≤≤≤ ∆∆∆∆E1

    

    

    
    
    

    

    
    
    

 (15) 

 
where E2nd and E3rd are the energy required to deform through the second and third corner point, 

respectively. The maximum deformation of the beam region and the joint panel is calculated by using 

restoring force characteristics, as shown in Fig. 4. 
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bθθθθ max
* ====

Mmax
*

bKL
*

++++bKR
*

Mmax
* <<<<

bMpL
*

bkL

bθθθθ max
*

====
Mmax

*
−−−− 1−−−−bαααα L(((( ))))bMpL

*

bαααα L bKL
* ++++ bKR

*

bMpL
*

bkL

≤≤≤≤ Mmax
*

<<<< bMp
*∑∑∑∑

bθθθθ max
* ====

Mmax
*

−−−− 1−−−−bαααα L(((( ))))bMpL
*

−−−− 1−−−−bαααα R(((( ))))bMpR
*

bαααα L bKL
*
++++ bαααα R bKR

* bMp
*∑∑∑∑ ≤≤≤≤ Mmax

*

    

    

    
    
    
    

    

    
    
    
    

 (16) 

 

    

pθθθθ max
* ====

Mmax
*

pK*
Mmax

* <<<<pMp
*

pθθθθ max
* ====

Mmax
* −−−− 1−−−−pαααα(((( ))))pMp

*

pαααα pK* pMp
* ≤≤≤≤ Mmax

*

    

    

    
    

    

    
    

 (17) 

 

  
 Figure 7. Situations when maximum response occurs 

 
Cumulative Plastic Deformation 

 

Calculation of the cumulative plastic deformation as the subassemblage deforms under seismic excitation 

is complicated due to the irregularities that arise in deformation. In the prediction method, the deformation 

in the following situation is regarded as cumulative plastic deformation of members; the subassemblage 

deforms with the same amplitude in both positive and negative directions, absorbing the seismic energy ΔΔΔΔ E2m-1+ΔΔΔΔ E2m during two half-cycles (one cycle), where ΔΔΔΔ Ej is the j-th largest energy increment during a 

half-cycle. Each single cycle does not continue to the next one, and each occurs l times as shown in Fig. 

9. In this situation, it is easier to calculate the cumulative plastic deformation of members even though the 

model is tetra-linear. We assume that ΔΔΔΔ Ej decreases linearly if ΔΔΔΔ Ej is arranged in order of magnitude 

despite actual process as shown in Fig. 10(a). In this case, ΔΔΔΔ E2m-1 differs from ΔΔΔΔ E2m, but is the 

subassemblage is considered to absorb the average of both energies during each half-cycle. 
 

 
Figure 9. Deformation of subassemblage for predicting cumulative plastic deformation 

 

 
 

Figure 8. Maximum deformation 
in prediction method. 
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Figure 10. Half-cycle energy in order of magnitude. 
 

For simplicity, we assume j is a real number, although it is actually a natural number. The sum of ΔΔΔΔ Ej is 

derived by ignoring the elastic strain energy, which is stored during previous half-cycles. Thus, 
 

 
    
Ep ==== ∆∆∆∆E j0

k
∫∫∫∫ dj (18) 

 

where k is the total number of times the plastic deformations occur and ΔΔΔΔ Ej is derived from assuming ΔΔΔΔ
Ej = 0 when j = 0 as shown in Fig. 10(b). 
 

 

    

∆∆∆∆E j ==== 0.25Edm 1−−−−
j

k

    

    
    

    

    
     (19) 

 
from Eqs. 13, 18 and 19, 
 

 
    
∆∆∆∆E2m−−−−1 ++++ ∆∆∆∆E2m ==== ∆∆∆∆E j2m−−−−2

2m
∫∫∫∫ dj ====

k −−−− 2m ++++ 1

2k
Edm

 , 

    

k ==== 8 1−−−−
Ey

Edm

    

    
        

    

    
         (20), (21) 

 
The amplitude of the moment at the node of the m-th cycle M*(m) is defined in Fig. 11. M*(m) is derived 

from ΔΔΔΔ E2m-1 + ΔΔΔΔ E2m. 

 

 

    

M (m)
* ====

∆∆∆∆E2m−−−− 1 ++++ ∆∆∆∆E2m

2 −−−−
M1

*

K1

++++
M1

*

K2

    

    
    

    

    
    

++++ 2M1
* ∆∆∆∆E2m−−−−1 ++++ ∆∆∆∆E2m <<<< Ep2

M (m)
* ====

∆∆∆∆E2m−−−− 1 ++++ ∆∆∆∆E2m ++++ −−−−
M1

*(((( ))))
2

K1

++++
M1

*(((( ))))
2

−−−− M2
*(((( ))))

2

K2

++++
M2

*(((( ))))
2

K3

    

    
    

    
    

    

    
    

    
    

2 −−−−
M1

*

K1

++++
M1

* −−−− M2
*

K2

++++
M2

*

K3

    

    
    

    

    
    

Ep2 ≤≤≤≤ ∆∆∆∆E2m−−−− 1 ++++ ∆∆∆∆E2m <<<< Ep3

M (m)
* ====

∆∆∆∆E2m−−−− 1 ++++ ∆∆∆∆E2m ++++ −−−−
M1

*(((( ))))
2

K1

++++
M1

*(((( ))))
2

−−−− M2
*(((( ))))

2

K2

++++
M2

*(((( ))))
2

−−−− M3
*(((( ))))

2

K3

++++
M3

*(((( ))))
2

K4

    

    
    

    
    

    

    
    

    
    

2 −−−−
M1

*

K1

++++
M1

* −−−− M2
*

K2

++++
M2

* −−−− M3
*

K3

++++
M3

*

K4

    

    
    

    

    
    

Ep3 ≤≤≤≤ ∆∆∆∆E2m−−−− 1 ++++ ∆∆∆∆E2m

    

    

    
    
    
    
    
    
    
    
        

    

    
    
    
    
    
    
    
    
    
    

 (22) 

 
where Ep2 and Ep3 are the energy when the amplitude of moment at the node reaches the second and 

third corner point. 
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Ep2 ==== 4M1
* M2

*
−−−− M1

*(((( )))) −−−−
1

K1

++++
1

K2

    

    
    

    

    
    

Ep3 ==== 4M1
* M3

*
−−−− M1

*(((( )))) −−−−
1

K1

++++
1

K2

    

    
    

    

    
    ++++ 4M2

* M3
*

−−−− M2
*(((( )))) −−−−

1

K2

++++
1

K3

    

    
    

    

    
    

    

    

    
    

    

    
    

 (23) 

 
The plastic deformation of the left and right beams and the joint panel during one cycle is calculated with 

the force-deformation relationship. 
 

 

    

bθθθθ pL(m)
* ==== 0 M (m)

* <<<<
2bMpL

*

bkL

bθθθθ pL(m)
*

====

2M (m)
*

−−−−
4bMpL

*

bkL

bαααα L bKL
*

++++bKR
*

2bMpL
*

bkL

≤≤≤≤ M (m)
*

<<<< 2 bMp
*∑∑∑∑

bθθθθ pL(m)
*

====
2M (m)

*
−−−− 4 bMp

*∑∑∑∑ ++++ bαααα R bKR
*

bθθθθ pL
*

−−−−bθθθθ pR
*(((( )))){{{{ }}}}

bαααα L bKL
* ++++bαααα R bKR

*
2 bMp

*∑∑∑∑ ≤≤≤≤ M(m)
*

    

    

    
    
    
    
    

    

    
    
    
    
    

 (24) 

 

    

bθθθθ pR(m)
*

==== 0 M (m)
*

<<<< 2 bMp
*∑∑∑∑

bθθθθ pR(m)
*

====
2M (m)

*
−−−− 4 bMp

*∑∑∑∑ ++++bαααα L bKL
*

bθθθθ pR
*

−−−−bθθθθ pL
*(((( )))){{{{ }}}}

bαααα L bKL
* ++++bαααα R bKR

*
2 bMp

*∑∑∑∑ ≤≤≤≤ M(m)
*

    

    
        

    
    
    

 (25) 

 

    

pθθθθ p(m)
*

==== 0 M(m)
*

<<<<2pMp
*

pθθθθ p(m)
* ====

2M(m)
*

−−−−4pMp
*

pαααα pK*
2pMp

* ≤≤≤≤ M (m)
*

    

    
    

    
    

 (26) 

 
Hence, the cumulative plastic deformation of the left and right beams and the joint panel is derived. 

 

 
    

bθθθθ pL
*∑∑∑∑ ==== bθθθθ pL(m)

*

m====1

l

∑∑∑∑ ，
    

bθθθθ pL
*∑∑∑∑ ==== bθθθθ pL(m)

*

m====1

l

∑∑∑∑ ，
    

pθθθθ p
*∑∑∑∑ ==== pθθθθ p(m)

*

m====1

l

∑∑∑∑  (27), (28), (29) 

 
where l is the number of the cycle and is obtained by rounding-up k/2 to the nearest natural number. 
 

 
 (a) ΔΔΔΔ E2m-1+ΔΔΔΔ E2m< Ep2 (b) Ep2 <ΔΔΔΔ E2m-1+ΔΔΔΔ E2m< Ep3 (c) Ep2 <ΔΔΔΔ E2m-1+ΔΔΔΔ E2m 

 

Figure 11. Amplitude of moment during each cycle. 

 
Verification of Prediction Method 

 
Subject Frame and Analysis Conditions 

 

The model is a fishbone-shaped frame as shown in Fig. 6. To investigate the seismic damage of 

members used together that have various ratios of strength and stiffness, steel moment frames are 

designed by separating stiffness from strength, despite these being connected in reality. The stiffness of 

the frame is determined so that the inter-story drift angle of each story is 1/200 when seismic design 
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forces of Level 1 (as defined by the Japanese code) are applied. The strength of the frame is determined 

in order that a collapse mechanism is formed when ultimate horizontal bearing forces of Level 2 (as 

defined by the Japanese code) are applied. 

 
The model parameters are the number of stories, the base shear factor (CB), the ratios of strength and 

stiffness between the beam region and joint panel (pM*p/ΣΣΣΣ  bM*p and pK*/ bK*), and the ratios of strength 

and stiffness between the left and right beams (bM*pL/ bM*pR and bkL), as shown in Table 1. Each story of 

the frame has the same value for these parameters, except for CB. In this case, ratios of energy, strength 

and stiffness are the same among the stories of a frame, and consequently, the predicted deformation is 

also the same for all frames. In Table 1, the underlined number is the combination of the parameters for a 
standard case. One of the parameters, CB, bkL, bM*pL/ bM*pR and bK*L/ bK*R changes under the condition 

that the others remain constant. The computed fundamental periods are 0.98 and 1.77 s for the 4- and 8-

story frames, respectively, irrespective of other parameters. 

 

The frames were analyzed using the program CLAP.f (Ogawa and Tada 1994), which features inelastic 

modeling and geometric non-linearities. Three kinds of earthquakes, El Centro 1940 NS, Taft 1952 EW 

and NTTB3 1995 NS, are employed in the numerical analyses. These are scaled in such that the velocity 
equivalent of Edm (= (2 g Edm/W)

0.5
, g is the gravity acceleration, W is total weight of frame) corresponds 

to 1.5 m/s, by conducting repeated analyses. Other conditions of the analyses were described elsewhere 

by the authors (2002). 

 

Table 1. Analysis parameters. 

 

n 4 ,8

CB 0.14, 0.19, 0.24

between beam region and joint panel
pM

*
p / ΣΣΣΣbM

*
p

0.5, 0.6, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5

between left and right beams
bM

*
pL / bM

*
pR

0.50, 0.67, 1.00

between beam region and joint panel
pK

*/bK
* 1.0, 2.0, 3.0

between left and right beams bkL 0.5, 0.6, 0.7

ratio of

strength

ration of
stiffness

base shear factor

number of stories

 
 
Comparison between Response Analysis and Prediction Method 

 

A large number of earthquake response analyses were conducted employing the aforementioned 

conditions. The comparison between these analyses and the predictions are shown in Figs. 12 to 15 and 

are example results of the results for 4-story frames. Figs. 12 to 13 are diagrams showing the maximum 

deformation of the beam region and joint panel (bθθθθ *max and pθθθθ *max) versus the strength ratio between the 

beam region and joint panel (pM*p/ΣΣΣΣ bM*p). Figs. 14 to 15 are diagrams showing the cumulative plastic 

deformations of the left beam and joint panel (ΣΣΣΣ bθθθθ *pL and ΣΣΣΣ pθθθθ *p) versus pM*p/ΣΣΣΣ bM*p. These figures 

clearly show the four points plotted for each parameter as the response for each story. The average line 

is plotted to show the tendency of the distributions of the analytical data, and the prediction line is also 

plotted. 

 

It was found that CB and pM*p/ΣΣΣΣ bM*p affect the response deformation of members, as is widely 

recognized. When the value of bM*pL/bM*pR and bkL differs from the standard case, implying that the 

formation of a plastic hinge in the left beam precedes that forming in the right beam, where ΣΣΣΣ bθθθθ *pL is 

larger than ΣΣΣΣ bθθθθ *pR. In such a case, deformation of the joint panel tends to be smaller than the standard 

case. pK*/bK* affect response deformation when both the beams and joint panel yield. Similarly, the 
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predicted deformations are in good agreement with the mean values obtained from the response analysis, 

which exhibits the tendency described above. 

 
Conclusions 

 

This paper proposed a prediction method for the seismic damage of beams and joint panels. In the 

method, the maximum and cumulative plastic deformations of each member were estimated based on the 

seismic energy applied to the frame and the force-deformation relationship of the members. Unlike other 

methods, the proposed method considers the stiffness of members and the order in which plastic hinges 

are formed by two beams that connect at the same node. 

 

The large number of response analyses that were conducted, each with varying ratios of strength and 

stiffness of members as parameters, revealed that each parameter affects the deformation response. 

Moreover, the applicability of the proposed method was confirmed through comparisons with analytical 

results, which corroborated the finding well regardless of the parameters values. 

 
Appendix 

 

In a cruciform subassemblage, the moment and rotation at the nodes of members are approximated. The 
column moment at the node cM*U , cM*L, the beam moment at the node bM*L, bM*R and the joint panel 

moment at the node pM* are defined as follows: 
 

 

    
cMU

*
====cMU++++cQU

db

2
==== cMU

1−−−− db HU

, 

    
cML

*
====cML++++cQL

db

2
==== cML

1−−−− db HL

 (A1.a), (A1.b) 

 

    
bML

*
====bML++++bQU

dc

2
==== bML

1−−−− dc LL

, 

    
bMR

*
====bMR ++++bQR

dc

2
==== bMR

1−−−− dc LR

  (A1.c), (A1.d) 

 

    
pM*

====pM ++++ bQL++++bQR(((( ))))
dc

2
++++ cQU++++cQL(((( ))))

db

2
====

2pM

2 −−−− db HL −−−− db HL −−−− dc LL −−−− dc LR

 (A1.e) 

 
where cMU, cML = column moments at the surface of the beam, bML, bMR = beam moments at the surface 

of the column, and pM = joint panel moment. HU and HL are the upper and lower story height, LL and LR 

are the width of left and right bays, dc and db are the depth of the column and the beam. 

 

The column rotations at the node cθθθθ *U, cθθθθ *L, the beam rotations at the node bθθθθ *L, bθθθθ *R and the joint 

panel rotation at the node pθθθθ * is defined as flows: 

 

 
    c

θθθθ U
*

==== 1−−−− db HU(((( ))))c θθθθ U
, 

    c
θθθθ L

*
==== 1−−−− db HL(((( ))))c θθθθ L

 (A2.a), (A2.b) 

 
    b

θθθθ L
*

==== 1−−−− dc LL(((( ))))bθθθθ L
, 

    b
θθθθ R

*
==== 1−−−− dc LR(((( ))))bθθθθ R

  (A2.c), (A2.d) 

 
    
pθθθθ

*
====

2 −−−− db HL −−−− db HL −−−− dc LL −−−− dc LR

2
pθθθθ  (A2.e) 

 

where cθθθθ U, cθθθθ L = column rotations at the surface of the beam, bθθθθ L, bθθθθ R = beam rotations at the surface 

of the column and pθθθθ  = joint panel rotation. 
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