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ABSTRACT 

 
There are significantly large number of reinforced concrete buildings in the US 
and many parts of the world that lack essential seismic details. These buildings 
are vulnerable to major damage or even collapse in a strong earthquake. 
Typically, columns in such buildings have insufficient transverse reinforcement 
and exhibit lack of strength and ductility during strong ground shaking. This study 
evaluates and presents two different macro models to determine the lateral 
response of reinforced concrete columns. The models are applied to estimate the 
lateral load-deformation response of previously tested columns, and the predicted 
and experimental data are compared. One of the macro-models examined here 
considers total lateral deformation of column to be composed of three 
deformation components due to flexure, shear and reinforcement slip. These 
individual deformation components are computed separately and then combined 
according to a set of rules based on comparison of column’s predicted flexural 
and shear strengths. The second approach considers the interaction of axial 
deformations and concrete compression softening to relate and couple flexural 
and shear deformations. Based on the comparison of predicted results with 
experimental data, conclusions are drawn to improve response estimation by 
either of the models. Implementation of suggested analytical procedure produces 
the response comparable with experimental results. 

 
Introduction 

 
There is a large inventory of reinforced concrete buildings in the US and other parts of 

the world that are not designed according to modern seismic design provisions. These buildings 
are often characterized by low lateral displacement capacity and rapid degradation of shear 
strength and hence are vulnerable to severe damage or even collapse during strong ground 
motions. Reconnaissance of damage observed during the past earthquakes suggests that poorly 
designed reinforced concrete columns are the most critical elements to sustain damage leading to 
a potential building collapse. Typically, these columns have insufficient and widely spaced 
transverse reinforcement and lack essential seismic reinforcement details resulting in non-ductile 
behavior. The need to assess their vulnerability to earthquake damage and hence suggesting the 
desired level of retrofit requires evaluation of the expected behavior in terms of strength and 
deformation capacity. This can be achieved by estimating the load-deformation response 
considering all potential failure mechanisms associated with axial, flexure and shear behavior. 
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There are a number of studies investigating structural response of non-ductile columns following 
varying approaches. This paper presents a comparative study of the application of two such 
macro models developed to evaluate response of lightly reinforced concrete columns.  
 

Displacement Component Model 
 

The model developed by Setzler and Sezen (2008) is based on the idea that a typical 
fixed-ended reinforced concrete column, when subjected to earthquake loading, undergoes lateral 
deformation which is comprised of three components; flexural deformations, reinforcement slip 
deformations and shear deformations. These component deformations are illustrated in Fig. 1a. 
The model simulates lateral load-deformation response by estimating these deformation 
components individually and then combing them according to a set of rules specified for each 
category. The classification of the columns into categories is based on comparison of their 
predicted shear and flexural strengths. Component deformation models and total response model 
under monotonically increasing lateral load can serve as a response envelope or primary curve 
for respective component cyclic responses. Details of the model can be found in Setzler (2005). 

 
Deformation Components 
 

In this model, flexural deformations are determined by performing traditional fiber 
section analysis in one dimensional stress field. This analysis takes into account the enhancement 
in the strength and ductility of the concrete due to confinement but ignores concrete behavior in 
tension. Following the moment-curvature analysis, the flexural deformations can be calculated 
by integrating curvature over the length of the column. The idealized curvature distribution for a 
cantilever column is assumed to have a linear curvature distribution up till yield point and after 
yielding, the inelastic curvatures are lumped over plastic hinge length. The plastic hinge length is 
taken as one half of the total section depth per the recommendations of Moehle (1992).   
 

The flexural deformations as determined through fiber section analysis cannot account 
for the end rotations that are caused by reinforcement slip. These deformations can be as large as 
25 to 40% of the total lateral deformations (Sezen 2002) and hence cannot be ignored. Therefore, 
slip deformations must be accounted for separately and added to the other deformation 
components (flexure and shear) to accurately model total drift of a column (Fig. 1a). Lateral 
displacements due to reinforcement slip are calculated in this study through a model which was 
proposed by Sezen and Moehle (2003) and further developed by Sezen and Setzler (2008). The 
model approximates the bond stress as bi-uniform function with different values for elastic and 
inelastic steel behavior (Fig. 2a). Slip at the loaded end of the reinforcing bar can be calculated 
by integrating bi-linear strain distribution over the development length as follows, 
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where ld and ld

’ correspond to the development lengths for elastic and inelastic portions of the 
bar, respectively.  fs is stress at loaded end of the bar, fy and db are yield stress and diameter of the 
bar, respectively. The slip is assumed to occur in tension bars only and cause the rotation about 
the neutral axis  



The basis of the shear model used in this research is the model developed by Patwardhan 
(2005), which uses Modified Compression Field Theory, MCFT (Vecchio and Collins 1986). 
Patwardhan (2005) proposed a piecewise linear model defining key points in the lateral force-
shear deformation envelope through a parametric study implementing MCFT through a computer 
program Response-2000. In this study, pre-peak non linear shear force-shear deformation 
response is obtained indirectly from Response-2000 by integrating shear strain distribution over 
the height of the column for each load step. After the peak strength has reached, the shear 
strength is assumed to remain constant at its peak value until the onset of shear strength 
degradation. Thereafter, shear strength decreases linearly with increasing shear deformations to 
the point of axial load failure, where lateral strength is assumed to be zero. The shear 
deformation model used is illustrated in Fig. 2b. Critical points on the shear response envelope 
are defined with set of following equations (Gerin and Adebar 2004, Elwood and Moehle 
2005a),  
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where, nv  is the shear stress at peak strength, cf   is the concrete compressive strength, ,v n  is 

the shear displacement at maximum strength determined from Response-2000, ALF is the total 
displacement at axial load failure, f,f and s,f are the flexural and slip displacements, 
respectively,   is the angle of the shear crack, P is the axial load, Asv is the area of transverse 
steel with yield strength fyv at spacing s, and dc is the depth of the core concrete, measured to the 
centerlines of the transverse reinforcement. In the derivation,  is assumed to be 65 degrees. 
 
Total Response 
 

The proposed procedure models each of flexure, slip and shear deformation by a spring 
subjected to the same force and the total response is the sum of the responses of each spring (Fig. 
1b). Each deformation component can simply be added to obtain the total response up to the 
peak strength of the column. However, for post-peak behavior, the column is classified into one 
of the five categories based on a comparison of its shear, yield and flexural strengths and 
deformation components are combined as per set of rules specified for each category. (Setzler 
and Sezen, 2008). The flexural strength, Vp is the lateral load corresponding to the peak moment 
sustainable by the column during flexural analysis. The shear strength of the column Vn, is 
calculated by the expression developed by Sezen and Moehle (2004) for lightly reinforced 
concrete columns.  

The peak response is limited by the lesser of the shear strength (Vn) and the flexural 
strength (Vp), however post peak response is assumed to be governed by the limiting mechanism 
(i.e., flexure or shear). Category I column (Vn < Vy) fails in shear while the flexural behavior 
remains elastic (Vy is the lateral strength corresponding to first flexural yielding). Category II 
column (Vy ≤ Vn < 0.95Vp) also fails in shear, however inelastic flexural deformation occurring 



prior to shear failure affects the post-peak behavior. Shear deformations continue to increase 
after the peak shear strength is reached, but the flexure and shear springs are locked at their peak 
strength values. In Category III column (0.95Vp ≤ Vn ≤ 1.05Vp), the shear and flexural strengths 
are nearly identical. It is not possible to predict conclusively which mechanism will govern the 
peak response. Shear and flexural failure are assumed to occur “simultaneously,” and both 
mechanisms contribute to the post-peak behavior. Category IV column (1.05Vp < Vn ≤ 1.4Vp) 
may potentially fail in the flexure, however inelastic shear deformations affect the post-peak 
behavior and shear failure may occur as the displacements increase. The shear strength in 
Category V column (Vn > 1.4Vp) is much greater than the flexural strength and column fails in 
flexure while shear behavior remains elastic. The implementation of this model on test 
specimens is illustrated in subsequent sections. The details of the column classification can be 
found in Setzler (2005). 

 
Axial-Shear-Flexure Interaction (ASFI) Approach 

 
Axial-Shear-Flexural Interaction (ASFI) approach has recently been developed by 

Mostafaei and Kabeyasawa (2007) for the displacement-based analysis of reinforced concrete 
elements such as beams, columns and shear walls by considering interaction between axial, shear 
and flexural mechanisms. This macro-model based approach consists of two models evaluating 
axial-flexural and axial-shear responses simultaneously to obtain total response of elements 
subjected to axial, flexural and shear loads. The axial-flexural and axial-shear mechanisms are 
coupled in average stress-strain field considering axial deformation interaction, softening of 
concrete compression strength while satisfying compatibility and equilibrium conditions. 

 
Axial-flexural behavior in ASFI approach is simulated by employing section analysis or 

fiber model in one-dimensional stress field in a conventional way, except that concrete behavior 
in tension is also incorporated in the analysis. Another deviation from standard flexural section 
analysis practice comes from the consideration of cracked concrete behavior in the analysis. 
Conventionally, the flexural section analysis is performed independently where compressive 
stress-strain relationships for the concrete are employed driven from its response in standard 
cylinder test which simulate uniaxial compression. However, the strain conditions for the 
concrete in the web of a reinforced concrete beam or column subjected to shear are significantly 
different from those in a cylinder test. The concrete in standard cylinder test is subjected to only 
small tensile strains primarily due to Poisson’s effect, whereas, the concrete in diagonally 
cracked web is subjected to substantial tensile strains. As a result, the concrete in diagonally 
cracked web is weaker and softer than the concrete in a cylinder. To account for theses 
influences, axial-flexural model in ASFI approach employs constitutive model for cracked 
concrete in compression. Studies indicate that the principal compressive stress in the concrete is 
not only a function of principal compressive strain but also of the co-existing principal tensile 
strain, such that compressive strength and stiffness of the concrete decrease as the tensile strains 
increase. This phenomenon, known as compression softening is one of the interaction terms for 
axial-shear mechanism that is incorporated into axial-flexural model coupling both mechanisms. 
In ASFI approach, concrete compression softening is employed in flexural analysis by softening 
concrete response in uniaxial compression. Axial strain due to flexure is the second interaction 
term in ASFI approach that connects axial-flexure mechanism with axial-shear mechanism. 

 



Axial-shear model in ASFI simulates shear mechanism by employing Modified 
Compression Field Theory and considering one integration point in in-plane stress condition. It is 
a displacement-based evaluation approach suitable for response estimation of reinforced concrete 
membrane elements subjected to normal and shear stresses. MCFT is essentially a smeared 
rotating crack model in which cracked concrete is treated as a new orthotropic material with its 
unique stress-strain characteristics. The critical aspect of MCFT is the consideration of local 
stress-strain conditions at cracks ensuring that the tension in the concrete can be transmitted 
across the crack and shear stress on the surface of the crack does not exceed maximum shear 
provided by the aggregate interlock. Thus, load deformation response of the members loaded in 
shear can be estimated by considering compatibility of average strains for concrete and 
reinforcement, equilibrium relationships involving average stresses in concrete and 
reinforcement and appropriate stress-strain relationships for reinforcement and diagonally 
cracked concrete. Complete details of ASFI approach can be found in Mostafaei (2006). 
 

Implementation of Analytical Models 
 

Both of the above mentioned models are implemented using four test columns (Sezen and 
Moehle 2006, and Sezen 2002). These tests render useful data in terms of experimental force-
displacement responses for each of the flexure, slip, and shear components individually, as well 
as for the overall response. The columns represent lightly reinforced columns that have shear and 
flexural strengths very close to each other. These are 18 inch square columns with fixed ends at 
top and bottom having height of 116 inches. The longitudinal reinforcement consists of eight No. 
9 bars. No. 3 column ties with 90-degree end hooks were spaced at 12 in. over the height of the 
column.  Specimens-1 and -4 were subjected to a constant 150 kip axial load, Specimen-2 was 
tested under a constant 600 kip axial load, and Specimen-3 had an axial load varying from 600 
kip in compression to 60 kip in tension to simulate the range of forces experienced by an exterior 
building column in an earthquake. The columns were tested under unidirectional cyclic lateral 
loading, except for Specimen-4, which was tested under monotonic loading. Average concrete 
strength was 3077 psi, and the yield strength of longitudinal and lateral steel was 59 and 63 ksi, 
respectively. 
 

In order to compare the analytical aspects of the two models, same material constitutive 
laws for concrete and reinforcing steel are employed. These are presented in Fig. 4. (Mander et 
al. 1988, Roy and Sozen 1964). In the figure, fcc

’ is the peak confined concrete stress calculated 
according to Mander et al. In ASFI approach, the concrete compression softening is incorporated 
into the response with compression softening factor   defined as,  
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where 1c  is principal concrete tensile strain obtained from axial-shear model of ASFI approach.  

 
Analysis Results and Discussion 

 
In Figs. 4 through 7, results for implementation of both models are presented. Before 

analyzing total lateral force-deformation response, it is helpful to study individual response 



components of both models to better understand their capabilities. Moment-curvature response 
from fiber section analysis was very similar with the exception of two aspects. Both models 
configure confined core and unconfined cover concrete separately with their respective stress-
strain relationships and strain limits while employing confinement effects for the core. Setzler 
and Sezen model, however, does not consider concrete strength in tension, as is done typically, 
primarily for sake of simplicity. In ASFI approach, axial-flexure and axial-shear models interact 
with each other through axial strain compatibility and employ same constitutive laws for 
materials. In addition, in fiber section analysis, ASFI approach considers softening effect in 
concrete compression strength due to increasing level of shear strains. This effect is incorporated 
in the flexural analysis by calculating compression softening factor  (Eq. 5) at each load step. 
For all specimens,  is equal to 1 for most part of the analysis. That is the reason that moment-
curvature responses from both models are nearly identical. The minor difference is due to 
considering concrete tensile behavior in one approach and not considering in the other. However, 
for the columns where flexural and shear strengths are not similar and shear is predominant, 
ASFI approach shall result in softened moment-curvature response. 

 
Figs. 4 and 5 present experimental and predicted load–flexural displacement and load–

slip displacement responses for specimens 1 and 2. Both models capture experimental response 
well and produce similar curves. This is due to the fact that moment-curvature relationships are 
very similar and same models are employed for determining flexural and slip displacements. The 
only difference in flexural model is the use of different plastic hinge lengths in plastic hinge 
model. If moment curvature responses are predicted differently by these approaches, which shall 
be the case for other categories of columns, flexural and slip responses shall be different even if 
same component displacement models are employed. In such cases, although ASFI approach 
might be able to predict total force-total displacement response very well, it is likely that the 
approach shall underestimate flexural and slip deformation components. In this analysis, this 
aspect could not be verified because the test columns in this study had either nearly identical 
flexural and shear strengths (specimen 1 and 4) or had higher shear strength than flexural 
strength (specimen 2 and 3).  

 
Fig. 6 shows experimental and calculated lateral force-shear displacement response for 

the specimens. Both models employ MCFT for determining shear deformations but in a different 
way. ASFI approach employs MCFT directly into the analysis in each loading step considering 
the interaction between axial, flexural and shear mechanisms. It follows an iterative scheme to 
satisfy the equilibrium and compatibility conditions. Setzler and Sezen model also employs 
MCFT, indirectly, for determining shear deformations. It takes the average shear strain 
distribution along the length of the column from Response-2000 program and then integrates 
them to get shear displacements prior to peak load. The details for post peak shear response are 
described above as well and in Fig. 2. Comparison of the predicted responses in Fig. 6 shows that 
ASFI approach captures the peak shear load very well, but stiffness and deformation at peak load 
are not predicted well. Setzler and Sezen model does a better job in capturing the initial stiffness 
of the response and predicts peak shear strength fairly well.  

 
Fig. 7 compares the experimental and predicted total lateral load-displacement responses. 

Both models predict the response equally well. In ASFI approach, deformation up till peak load 
are added together satisfying equilibrium and compatibility conditions and considering 



interaction of compression softening and axial displacements. For post-peak response, the same 
conditions are satisfied while keeping stiffness of shear and pullout model as constants. The 
compression softening factor is also freezed at the value corresponding to the peak load. A very 
important aspect of the post-peak response in ASFI approach is reduction in compression 
strengths of the longitudinal bars to account for buckling or slip of compression bars. These 
stresses are reduced when unconfined cover concrete fibers reach approximately 30% of 
maximum strength. The compressive bars stresses are then reduced linearly in accordance with 
the slope of post-peak compression strength of the confined concrete. In this study, the model for 
reduction in compression bars stresses is illustrated in Fig. 3d. As per Setzler and Sezen (2008) 
model, Specimen-1 has flexural and shear strengths of 70.4 and 69.0 kips, respectively. 
According to their criterion, this column is classified as category III column. Setzler and Sezen 
model captures initial response very well up to the peak strength. The post-peak deformations are 
slightly over predicted, but slope of the degrading response follow the experimental data well. 
ASFI approach predicts a peak shear strength of 67 kips at displacement of 2.00 inches which 
agrees well with the experimental data. Predictions for post peak response are slightly better with 
slope of degrading curve following the experimental results.  

 
Compression steel stresses were reduced as per the model given in Fig. 3d. According to 

this model, compression stresses start to decrease when concrete fibers adjacent to compression 
bars reach their peak strength. When this happens, corresponding strain in the relevant steel layer 
can be calculated from flexural strain distribution across the cross section depth. This strain is sp 
as shown in the figure. This point can fall anywhere on typical stress-strain relationship for steel 
depending upon the level of flexural strain. Steel stresses follow their usual constitutive stress-
strain relationship until strain reaches this limit. Then compression stresses in reinforcement 
follow new path defined by line joining peak stress point to residual strength point having slope 
m, which is the same for descending branch of concrete compression strength. The figure shows 
that the post peak response improves remarkably after considering stress reduction in 
compression bars.  

 
Specimen-2 is placed in category IV having shear and flexural strength of 93 kips and 72 

kips respectively as per Setzler and Sezen model. Flexural behavior predicted by Setzler and 
Sezen model agrees with the experimental data. ASFI approach estimates the initial and peak 
responses equally well. Specimen-3, in the positive direction is under high axial load has shear 
and flexural strength of 93 and 72 kips, respectively as per Setzler and Sezen model making it a 
category IV column. In the negative direction, it has approximately equal shear and flexural 
strength around 56 kips, placing it in category III. Setzler and Sezen model estimates high initial 
stiffness. Peak strength under low axial load is estimated well but overestimated under high axial 
load. Post peak predictions are slightly off in the positive direction and overestimated in the 
negative direction. ASFI approach estimates the peak load as 69 kips at deformation of 1.00 inch, 
which is very close to the experimental data. Predicted initial response is less stiff. The response 
under tensile load could not be evaluated with the ASFI approach. Specimen-4 is identical to 
Specimen-1, except for lateral loading scheme. The initial stiffness by Setzler and Sezen model 
is overestimated, but peak strength is predicted fairly well. The ASFI model also predicts stiff 
initial response, and underestimates post peak response. 
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Conclusions 
The application of two macro models is examined for displacement-based analysis of 

previously tested shear critical columns subjected to lateral loads. One model considers total 
lateral deformation of columns stemming out from three components namely flexure, shear and 
bond slip. The other model, ASFI approach, consists of axial-flexure and axial-shear models 
connected together through interaction of concrete strength degradation and axial deformations. 
In this study ASFI approach predicted displacement at peak very well, but is expensive in 
calculations and requires iterative procedures and nested loops to achieve convergence of the 
results. On the other hand, Setzler and Sezen model is efficient in use due to its simplicity and 
ease of application. Both models perform well for estimating structural performance of lightly 
reinforced concrete columns including ultimate strengths and deformations, mode of failures and 
post peak responses.  

 
 
 
 
 
 

 
 
 
 
 

 
Figure 1.  Deformation Components of a Reinforced Concrete Column and Spring Model. 

 
 

 

 

 

    
(a) Model for Slip Rotation/Deformations           (b)  Model for Shear Deformations 

Figure 2.  Models for component deformations  

 

 

 

 

 
 

sec

'
sec

  ==>  
1

             ==>  ( )

1 5 1   ;  

                        ;    ;  57000

cc c cc
c cc c r

c cc

c cc c c cc cc

cc c
cc co

c c

cc cu cc
c c

cc cu cc

f r
f

r

f m f m

f E
r

f E E

f f f r
m E E f

 
 

 

   

 

  


 

 

   

  
         

 
  



              

 

cf  

c

'

cc
f  

'0.5
cc

f  

cuf  

cc  
cu  50u  

(a)  Concrete in Compression 
1c

  

1c
f  

cr
  

cr
f  

1c c
E 

1
1 200

cr

c

f



 

(b)  Concrete in Tension 



 

 

 

 

 

 

 

Figure 3.  Material Constitutive Relationships 
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Figure 4.  Comparison of Lateral Load-Flexural Displacement Responses. 
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Figure 5.  Comparison of Lateral Load-Slip Displacement Responses. 
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Figure 6.  Comparison of Lateral Load-Shear Displacement Responses. 
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Figure 7.  Comparison of Total Estimated Responses and Experimental Data. 
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