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ABSTRACT 
 
 Beam-column joint damage can significantly impact the performance of 

reinforced concrete moment frames subject to earthquake loading, and, in extreme 
cases, can contribute to frame collapse. To assess the seismic performance of 
existing concrete frames, engineers require models that can accurately predict the 
behavior of joints for a wide range of designs and that are easily implemented in 
commercial software. In this study, a database of 45 planar interior beam-column 
joints is used to evaluate two types of joint models. First, models acceptable for 
linear analyses are considered. The rigid offset models recommended in the 
ASCE/SEI Standard 41-06 are evaluated, and a modified approach to determining 
the rigid offset length is proposed to provide improved prediction of the 
displacement at which beams yield. Second, a model is developed to support 
nonlinear modeling of frames and enable simulation of progressive joint stiffness 
and strength loss. A number of nonlinear joint models can be found in the 
literature, but few are easily implemented in commercial design/analysis software 
or verified for a range of joint designs. In this study, a simple nonlinear model is 
proposed in which lumped-plasticity beam elements are modified to account for 
joint flexibility and potential strength loss. Specifically, the beam-element plastic 
hinge is assumed to represent two nonlinear hinges in series. The first hinge 
represents the flexural response of the beam, and the second represents the 
nonlinear response of the joint. The beam flexural hinge is defined by the 
traditional moment-curvature response of the beam section and a newly developed 
rotation limit at which strength loss is predicted. The joint hinge is bilinear, with 
stiffnesses calibrated to accurately predict measured response, and includes a 
rotation limit at which strength loss initiates due to joint failure. The proposed 
model accurately predicts the load-displacement response of frame sub-
assemblages including accurately predicting the mechanism that determines 
response: beam flexure or joint failure.  
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Introduction 
 
 Beam-column joints in RC moment frames can contribute significantly to frame flexibility 
and strength loss during an earthquake. Thus, practical models are required to enable engineers to 
simulate joint response and its impact on overall frame response. A wide range of models for RC 
beam-column joints are found in the literature. The simplest, found in the ASCE/SEI Standard 41-
06 (2006), includes rigid offsets at the ends of beam and column elements that are varied in length 
to simulate the flexibility of the joint region. Other recent models include those presented by 
Anderson et. al. (2007) in which empirically calibrated nonlinear rotational springs connect beam 
and column centerline elements. Nonlinear models in which finite-volume joint macro-elements 
have been proposed (Mitra and Lowes 2007, Shin and Lafave 2004,  and Lowes et al. 2003) to 
account for flexibility due to slip of beam longitudinal reinforcement and shear action within the 
joint core. Despite the variety of alternatives available for modeling beam-column joints, few meet 
the requirements necessary for widespread use in practice: 1) compatibility with commonly 
employed commercial software packages, 2) support for rapid model building, 3) computational 
efficiency and robustness, and 4) acceptable accuracy over a range of design configurations.  
 
 Two practical methods for modeling joint response are discussed in this paper. First, rigid 
offset models, which are appropriate for elastic analysis, are considered. The model presented 
included in the ASCE/SEI Standard 41-06 is evaluated. Recommendations are made to improve 
the prediction of initial joint stiffness using rigid offset length determined as a function of joint 
design parameters. Second, a nonlinear model is proposed that modifies lumped plasticity beam 
elements to account for joint flexibility. Both linear and nonlinear models are evaluated using an 
extensive experimental data set of joint tests with a wide range of design parameters representing 
both modern and older detailing.  
 

Experimental Data Set 
 
 For evaluation of existing models and calibration of proposed models, a data set of planar 
interior beam-column joint sub-assemblages was developed from that presented by Mitra and 
Lowes (2007). The data set comprises sub-assemblages without i) slabs or transverse beams, ii) 
failure modes of beam shear, column flexure or column splice failure, and iii) smooth reinforcing 
bars. All specimens were subject to reversed cyclic lateral loading, to represent earthquake 
loading. Test specimens were evaluated to determine if joint designs satisfied the seismic design 
criteria of the ACI Building Code (2008) for Special Moment Frames, and thus whether or not 
joint damage could be expected to limit subassemblage ductility under seismic loading. ACI 
compliance was determined on the basis of joints meeting the requirements for 1) concrete 
compressive strength and reinforcement yield strength, 2) the ratio of the sum of the column 
flexural strengths to the sum of the beam flexural strengths 3) presence of lap splices or 
termination of beam reinforcement in the joint 4) ratio of column height to beam longitudinal 
reinforcement diameter 5) amount and spacing of joint transverse reinforcement and 6) nominal 
joint shear stress demand (Eq. 1). Eleven joints were found to be ACI Compliant and 34 were 
found to be ACI Non-Compliant, having failed to meet at least one of the above requirements. 
 
 Evaluation of the experimental data indicated that a number of design parameters affect 
the seismic performance of joints; however, shear and beam-bar bond stress demand were found 



to be the most critical and were used to refine the joint models. Shear stress demand, was 
computed using the approach recommended by ACI Committee 352: 
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where hc is the column depth, bj is the out-of-plane dimension of the joint, fc is the concrete 
compressive strength, fy is the measured yield strength of the beam longitudinal reinforcing steel,   
As

top and As
bot are the area of the steel in the top and bottom of the beam, respectively, and α is 

defined as 1.25/1.11, rather than the 1.25 recommended by Com. 352, to account for the fact that 
fy is the measured rather than nominal yield strength of the reinforcing steel. For the data set, 
shear stress demands had a mean value of 19.4 and a standard deviation of 9.8. The bond index, 
μ, was defined as the normalized maximum beam-bar bond stress in the joint assuming the bars 
yield: 
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where db is the maximum diameter of the beam longitudinal reinforcement and all other variables 
are as defined in Eq. 1. For the data set, the mean bond index was 25.3, with a standard deviation 
of 11.0. 
 

Linear Models 
 
 Rigid offset models are easily implemented in commercial structural analysis software 
and, thus, are a practical tool for engineers to use to simulate joint flexibility in linear elastic 
analysis of RC frames. In a basic line-element model of a frame, the flexural, shear and torsional 
stiffness of frame elements are determined from frame member dimensions and material 
properties. Often, effective stiffness are employed  for frame elements; these effective stiffness 
represent a reduction from the gross section stiffnesses that are computed using member gross 
section dimensions and elastic material properties and are intended to simulate the impact of 
cracking under service level loading on member stiffness. In the typical line-element model, 
beams and columns intersect at a node located at the center of the “joint”. Often, the joint region 
is assumed to be rigid, and this rigidity is simulated by introducing rigid offsets at the ends of 
beams and columns within the joint volume. The length of these rigid offsets can be adjusted to 
enable simulation of the joint flexibility observed in the laboratory. In this study, existing 
recommendations for offset lengths were evaluated using the previously discussed experimental 
data set. Additionally, new offset length recommendations were made to improve prediction of 
frame response. 
 
       First, simple centerline models were created of the 45 sub-assemblages in the data set. In 
these models, rigid offsets were not included at member ends within the joint (Fig. 1a) and beam 
and column effective stiffnesses were defined using the recommendations of ASCE/SEI 
Standard 41-06. Models were loaded with the appropriate column axial load and with a column 
shear corresponding to first yield of the beams (or maximum load if beams did not yield) in 
flexure. For each sub-assemblage, i, the analytical displacement, ( )yield i

simΔ , at the yield load was 



compared with the experimental displacement, ( )yield i
expΔ , at the yield load. The error in the 

predicted displacement was computed as the difference between the experimental and simulated 
displacements, normalized by the experimental displacement: 
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For a number of joint subassemblages, the centerline model (without rigid offsets within the joint 
region) was stiffer than the experimental sub-assemblage. For these subassemblages, the 
introduction of beam and/or column rigid offsets within the joint increases the error is predicted 
displacement, and rigid offset lengths cannot be found that reduce the error in predicted yield 
displacement. Thus, a reduced dataset of 26 specimens that excluded these sub-assemblages was 
formed for model calibration purposes. 
   

 
Figure 1. Centerline models of sub-assemblages with a) no offsets, b) full length offsets, and c) 

offsets using proposed β factor applied. 
 
 Next, the recommendations in ASCE/SEI Standard 41-06 and its predecessor, FEMA 
356, were evaluated. FEMA 356 recommends offset lengths equal to the full joint dimensions 
(Fig. 1b) and effective bending stiffness values for frame elements of 0.5-0.7EIg. ASCE/SEI 
Standard 41-06 recommends lower effective stiffness values for frame members of 0.3-0.7EIg 
and rigid offset lengths i) equal to full column depths for beams only for the case of ΣMnc/ΣMnb 
< 0.8, ii) the full beam depth for columns only for the case of ΣMnc/ΣMnb > 1.2, or iii) half the 
joint dimensions in the beams and columns for the case of 0.8 < ΣMnc/ΣMnb < 1.2, where Mn is 
the nominal flexural strength of the beam or column and moments are summed at the center of 
the joint.  
 
 Finally, the reduced dataset was used to develop rigid offset length recommendations that 
improved prediction of secant stiffness to yield. Effective stiffnesses values from ASCE/SEI 
Standard 41-06 were used for the frame members, and rigid offsets were included at the ends of 
both the beams and columns. Rigid offset lengths were defined as a percentage, β, of the joint 
dimensions (Fig. 1c). β values were found for i) all joints in the reduced data set, ii) ACI 
compliant joints in the reduced data set, and iii) ACI non-compliant joints in the reduced data set. 
The factor β was found using two methods. First, a single value was found by minimizing the 



sum of the square of the displacement errors, εi (Eq. 3), of the specimens in the reduced data set. 
This optimal β value was rounded to a proposed single significant digit to facilitate application in 
practice. These β values are presented in Table 1 and show that frames with ACI compliant joint 
designs are most accurately modeled with stiffer joints than frames with ACI non-compliant 
joints. Next, relationships were sought between joint design parameters and the optimal offset 
length for individual sub-assemblages, where the optimal offset length for specimen i minimizes 
εi. Normalized shear stress demand, τ (Eq. 1), and bond demand, μ (Eq. 2), were found to 
correlate with the offset length needed to accurately predict experimental initial stiffness, and a 
functional offset length model was developed. The form of this functional offset model is 
presented in Table 1. 
 

Table 1. Rigid offset lengths calibrated with reduced data set 
 

Calibration Method All  ACI Compliant ACI Non-Compliant 
Optimal Exact β = 0.44 β = 0.62 β = 0.39 
Optimal Proposed β = 0.4 β = 0.6 β = 0.4 
Optimal Functional β = 0.92 – 0.02μ β = 1.87 – 0.04τ – 0.05μ β = 0.81 – 0.02μ 

 
Tables 2 presents the average and standard deviation of the error given by Eq. 3 for the 

reduced data set and all of the models considered in the study. Specifically, error measures are 
provided for the modeling recommendations in FEMA 356, in ASCE/SEI Standard 41-06, and 
developed as part of this study. Additionally, error data are provided for models employing the 
ASCE/SEI Standard 41-06 beam and column effective stiffnesses for the case of no offsets, β = 
0.0, and for the case of a fully rigid joint, β = 1.0. Error measures are included for all joints in the 
reduced dataset as well as for the ACI compliant and ACI non-compliant datasets. 
 

Table 2. Error evaluation for rigid offset models: reduced data set 
 

Model All Specimens ACI Compliant 
Specimens 

ACI Non-
Compliant 
Specimens 

Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. 
FEMA 3561 0.53 0.07 0.50 0.08 0.54 0.07 
Fully rigid joint (β=1) 2 0.24 0.12 0.17 0.14 0.25 0.12 
SEI/ASCE 41-062 0.04 0.14 -0.04 0.17 0.06 0.13 
Optimal - Exact2 0.02 0.15 0.02 0.16 0.01 0.14 
Optimal – Proposed2 0.02 0.15 0.01 0.17 0.02 0.14 
Optimal - Functional 2 0.001 0.12 0.002 0.05 0.004 0.12 
Centerline (β=0) 2 -0.19 0.17 -0.28 0.21 -0.16 0.16 

Notes: 1. Beam and column effective stiffness defined per FEMA 356. 2. Beam and column 
effective stiffness defined per ASCE/SEI Standard 41-06.  
 
 The data in Table 2 show that application of the FEMA 356 recommendations resulted in 
a significant over-prediction of the stiffness of the frame subassemblages and that application of 
the ASCE/SEI Standard 41-06 recommendations significantly improved the prediction of yield 
displacement. The error data for the case of fully rigid joints (β = 1) with ASCE/SEI Standard 
41-06 member effective stiffnesses, shows that improved simulation of member stiffness 



contributed significantly to overall improvement in displacement prediction. The data in Table 2 
show also that the rigid offset length recommendations developed as part of this study provide a 
modest improvement over the current ASCE/SEI Standard 41-06 recommendations. If only 
compliance with the ACI Code requirements for joint design is considered, the average error in 
yield displacement is reduced at a minimum from 4% with the ASCE/SEI Standard 41-06 model 
to 2% with the proposed model and at most from 6% to 1% for non-compliant joints. Using the 
proposed functional models, the average error in yield displacement is reduced at a minimum 
from 4% with the ASCE/SEI Standard 41-06 model to 0.2% with the proposed model and at 
maximum from 6% to 0.4% for non-compliant joints.  

 
Nonlinear Model 

 
 Rigid offset models are simple and can provide reasonable prediction of initial stiffness. 
However, they lack the ability to capture the changes in joint stiffness associated with beam 
yielding and strength loss due to joint damage, behaviors exhibited in joints during seismic 
loading. To facilitate nonlinear modeling of joint response using commercial software, a model 
was developed in which the moment-rotation response of the plastic hinge in a lumped-plasticity 
beam element was modified to account for additional flexibility and potential strength loss 
resulting from joint damage.  
 
 Fig. 2 shows a model of a frame sub-assemblage employing lumped plasticity beam 
elements. Columns and beams, outside of the hinge, are assigned effective stiffness values 
according to the recommendations of ASCE/SEI Standard 41-06. Rigid offsets define the 
physical joint region as rigid (β=1.0). The lumped plasticity beam elements have a plastic hinge 
located at the face of the joint. Typically, hinge response would be defined using the results of a 
moment-curvature analysis of the beam cross-section and a plastic-hinge length (typically a 
length of one-half the beam depth is used). This model does not explicitly account for the 
nonlinear behavior of the joint. Thus, a modified model was developed, in which the beam 
plastic hinge is modified to include two rotational springs in series. One spring represents the 
nonlinear flexural behavior of the beam; the other represents the nonlinear behavior of the joint. 
Rotational limits allow the model to account for loss of lateral load carrying capacity. Fig. 3 
illustrates moment-rotation responses of the individual and combined springs.  
 

 
 

Figure 2. Nonlinear model of sub-assemblage using modified lumped plasticity beam elements 



 
Figure 3. Moment-rotation curve for a) beam spring, b) joint spring, and c) the combined beam 

and joint springs making up the series plastic hinge. 
 
 To develop the joint moment-rotation model, it is assumed that a joint responds primarily 
in shear and the shear stress-strain behavior of the joint is transformed to a moment-rotation 
relationship by imposing compatibility and equilibrium requirements. Using this approach, the 
moment-rotation stiffness, k, of the joint spring may be written: 
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where frame geometry determines the modifiers: 
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and hb and hc are, respectively, the depth of the beam and column, Lb is the column-to-column 
centerline length of beam, Lc is the beam-to-beam centerline height of the column, Aj is the 
cross-sectional area of the joint, and jd is the lever arm of the beam moment. Introducing the 
concrete shear modulus: 
 

 G τ
γ

=  (7) 

 
the joint stiffness in the proposed model may be defined, for each segment, i, of a multi-linear 
response model:  
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where αi is a calibrated modification factor .  



 The joint spring was placed in the plastic hinge in series with a moment-rotation spring 
representing the beam response, developed from a moment-curvature analysis of the beam 
(performed in OpenSees (McKenna, et. al., 2007)) and an assumed plastic hinge length of one-
half the depth of the beam. Together, these springs combined to produce a modified plastic-hinge 
model that accounts for joint flexibility. To represent strength loss, rotational limits were placed 
on the beam and joint springs. These limits were calibrated using experimental data. 
 
Model Calibration 
 
 The initial joint stiffness was calibrated by optimizing the secant stiffness of the plastic 
hinge at the column shear corresponding to initial yielding of the beams, where the joint initial 
stiffness is defined by the calibrated stiffness parameter α1 = 0.14. 
 
 The post-yield stiffness of the joint spring was established using data for joints in which 
both beam on both the right and left sides of the joint yielded. This was done to ensure accurate 
simulation of post-yield response, specifically to enable calibration of rotation limits (for loss of 
lateral strength capacity) in the joint shear spring and beam springs to achieve simulation of 
displacement ductility. The resulting stiffness parameter was α2 = 0.038. 
 
 To calibrate rotation limits for the joint and beam hinges, a method for classifying and 
predicting the response mode of each joint test specimen was needed. Data for specimens 
classified as “brittle” were used to calibrate the rotation limit for the joint hinge; while, data for 
specimens classified as “ductile” were used to calibrate the rotation limit for the beam hinge. The 
joints were classified according to the level of displacement ductility (μΔ) achieved at 10% loss 
in the maximum strength. Displacement ductility of unity (1.0) was defined at the column shear 
associated with theoretical beam yielding. Joints were identified as "Brittle" if they did not reach 
this column shear. For those joints that reached or exceeded this yield force, those with a 
displacement ductility of at least 4.0 were identified as "Ductile". Joints between these limits 
were identified as "Limited Ductility". Eighteen joints were classified as "Brittle", twenty as 
"Ductile", and seven as "Limited Ductility".  
 
 The rotational limit for the beam hinge was determined by finding the curvature 
minimizing the average drift error at strength loss of ductile joints, where the curvature and 
rotation are related by: 
 

 0.0056fail fail
bm p bm pllθ φ= =  (9) 

 
where lp is the plastic hinge length defined equal to half the beam depth for the current study.   
 
 The joint rotational limit was calibrated by minimizing the average drift error of brittle 
joints at strength loss, and was defined as a function of joint shear strains and system geometry: 
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where χy is as defined in Eq. 6.  



 
Model Validation 
 
 To evaluate the proposed nonlinear model, pushover analyses were performed on models 
of the joint sub-assemblages. The analytical load-drift envelopes were compared with the 
experimental envelopes at key points in the load-drift histories: 1st yield (any beam yields), 2nd 
yield (both beams have yielded), peak strength, and 10% loss of lateral load carrying capacity. 
The error at these points was calculated as the difference between experimental and analytical 
values, normalized by the experimental value.  Table 3 provides the average error in load and 
drift as well as the standard deviation of this error at the identified key points of the response 
history. Fig. 4 shows the best worst simulation of experimental response for brittle and ductile 
joints. 
  
Table 3. Error of proposed nonlinear joint model at key points of the response history 

                

 
Data Sub-sets Error 

1st Yield1 2nd Yield1 Peak Strength 10% Strength Loss 
 Disp Disp Disp Load Disp Load 
 

All2 Average 6.% 14% -32% 5% 26% 6% 
 Stand. Dev. 23% 25% 78% 10% 34% 11% 
 

Ductile Average 8% 18% -61% 8% 8% 2% 
 Stand. Dev. 25% 25% 90% 7% 36% 9% 
 

Limited Ductility Average -4% -2% -20% 12% 46% 9% 
 Stand. Dev. 24% 25% 84% 8% 41% 13% 
 

Brittle Average - - -4% -1% - - 
 Stand. Dev. - - 53% 10% - - 

1For 1st and 2nd yield, excludes joints not the corresponding yield force

 
 The data in Table 3 and Fig. 4 show that the model enables accurate simulation of 
response. At the column shear corresponding to first yield, the data in Table 3 show that 
displacement was predicted very well, indicating the ability of the proposed model to adequately 
capture the initial stiffness of the assemblages. Brittle joints had a low error for displacement and 
force at the peak strength. Although there was significant scatter in this error for the 
displacement, the peak force had a low standard deviation, indicating the accuracy of the model 
in predicting the strength capacity of the brittle joints. For ductile and limited ductility joints, the 
error in peak strength and the standard deviation of this error are low (less than 13%). For ductile 
and limited ductility joints, the average error in the predicted displacement at peak strength and 
the standard deviation on this error are large; however, this is a function of the relatively small 
stiffness of the system in the vicinity of peak strength and, thus, provides limited information on 
model accuracy, as the moment capacity of the beam, determined through moment-curvature 
analysis, controlled this aspect of the model.  

 



 
Figure 4. Envelopes for (a) best brittle prediction, MJ3, (b) worst brittle prediction, PEER22, (b) 

best ductile prediction, PR3, (d) worst ductile prediction, HC, (e) best limited 
ductility prediction, PM1 and (f) worst limited ductility prediction, MJ12. 

   
 The proposed model may be evaluated also on the basis of the accuracy with which the 
failure mechanism is simulated. For all “Ductile” joints, strength loss was simulated to occur 
when the beam rotation limit was reached. For all “Brittle” joints, strength loss was simulated to 
occur when the joint spring rotation limit was reached. Thus, the model accurately predicted the 
failure mechanism for these joints. Of the seven "Limited Ductility" joints, six exhibited strength 
loss when the joint rotation limit was reached, and thus exhibited brittle failure in the simulation.  
 

 
Conclusions 

 
 The rigid offset approach for modeling beam-column joint behavior, recommended by 
ASCE/SEI Standard 41-06 for evaluation of existing structures and easily implemented in 
commercial software, improved the prediction of experimental joint stiffness prior to beam 
yielding when compared to the recommendations of FEMA 356. Proposed recommendations 
were developed using an extensive data set of beam-column joint sub assemblages, where offset 
length was determined based on joint shear stress demand and bond demand of beam 



longitudinal reinforcement passing through the joint. Using this method, the error in prediction 
of the initial joint stiffness was reduced approximately 40% over the ASCE/SEI Standard 41-06. 
 To provide an easily implemented model capable of capturing post-yield behavior of 
joints, including loss of lateral load carrying capacity, a nonlinear model was developed that 
modified lumped-plasticity beam elements to account for joint behavior. The joint was modeled 
using bilinear moment-rotation springs, with stiffness defined as a function of sub-assemblage 
geometry and the concrete shear modulus. Loss of lateral load carrying capacity was accounted 
for through rotational limits in the plastic hinge. Separate limits for the beam and joint behavior 
within the plastic hinge allowed the model to account for both brittle and ductile failure modes 
independent of prior knowledge of the failure mode.  
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