RELIABILITY-BASED EVALUATION OF DESIGN PROCEDURE FOR STEEL SELF-CENTERING MOMENT FRAMES

Gordana Herning¹, Maria E. M. Garlock² and Erik Vanmarcke³

ABSTRACT

Self-centering moment-resisting frames (SC-MRFs) have the potential to eliminate structural damage under a design basis earthquake and return to their original vertical position following a major earthquake. The objective of this study is to validate an existing design procedure for SC-MRFs. This study examines the response of a 3, 9, and 20 story SC-MRF subject to one thousand artificially generated design (DBE) and maximum considered (MCE) ground motions. The predicted maximum roof drift, story drift, and connection rotation are compared, in probabilistic terms, to the demand obtained in the nonlinear analyses. This data is used to recommend means to improve the existing design procedure and to generate fragility curves for the structure. The results will be used to develop a reliability-based seismic design procedure for these SC-MRF connection details.

Introduction

Motivation for recent development of performance-based design recommendations for steel self-centering frames (Garlock et al. 2007) comes from the results obtained over the last decade in experimental and analytical investigations of these systems in seismic applications (Ricles et al. 2001, Christopolous et al. 2002, Garlock et al. 2005, and Chou et al. 2006). Research shows that these highly ductile systems resist structural damage after repeated inelastic response cycles under the design level earthquakes. Due to post-tensioning that enables self-centering, residual drift after an earthquake is eliminated. Supplemental connection elements such as top-and-seat angles (Garlock et al. 1998), steel bars (Christopolous et al. 2002), friction devices (Rojas et al. 2005) or plates (Chou et al. 2006) are provided to increase energy dissipation (ED) and to detract structural damage from the main frame elements. Connection behavior, characteristic for PT frames under cyclic loading, includes opening and closing of a horizontal gap at the beam-column interface. This is quantified by the relative rotation between the beam tension flange and the column flange, θ_r, as shown in Fig. 1.

Prior studies related to the existing design procedure for the SC-MRFs were based on a six story prototype building subjected to six ground motions (Garlock et al. 2007), which was the extent of computational capabilities at the time. Recent technological advances enable the number of computational simulations that was previously not feasible. High performance computing facilities now allow running thousands of nonlinear analyses of these prototype models in a day. In the current study, we subjected 3, 9 and 20 story prototypes to over a

1Graduate Student, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
2Assistant Professor, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
3Professor, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
thousand seismic events, including natural seismic records (Herning et al. 2009) and synthetically generated ground motions. Structural response to both types of events confirms the validity of using artificial ground motions, which can be a convenient substitute in the absence of a sufficient number of representative natural records for a particular area.

The dataset obtained from the analyses using artificial ground motions was the basis for a reliability study of the SC-MRFs, in which we assessed the probability of the system demand exceeding its capacity. Using a closed-form relationship for θ_r at which post-tensioning strands yield (Garlock et al. 2007), we express the system reliability in terms of the likelihood of reaching the limit state of strand yielding. We also evaluated the effectiveness of the response predictions that were made in the design process. The predicted seismic demands, such as connection relative rotation (θ_r in Fig. 1), roof drift, and story drift, were compared to those obtained in the nonlinear analyses, to study the effects of the design parameters, and to recommend the means of improving the design procedure.

Prototype Design

Three, nine and twenty story prototype buildings were designed for a high-risk seismic zone and stiff soil conditions, using the performance based design procedure described in Garlock et al. (2007) and the provisions of ASCE Design Standard 7-05. All members are assumed to have a nominal yield stress of 50 ksi and gravity loads consistent with an office building in Los Angeles, CA. Floor plans, elevations, member sizes, and connection details of the three prototypes are shown in Fig. 2. SC-MRFs occupy only the interior bays at the perimeter of the buildings, to reduce the potential of bi-axial bending at the corner columns and out-of-plane bending of the SC-MRFs. Composite action between the gravity framing and the slab is assumed in the areas that are shaded in plan. Floor beams perpendicular to the MRFs are collector beams, which transfer the inertia forces from the slab to the frames. Collector beam designs are prototype-specific and are given in Garlock et al. (2009). The 3 and 9 story prototypes each have eight collector beams framing into a MRF at every level above grade, while the 20 story building has seven. The collector beam stiffness and strength for the 3 and 9 story are 65 kips/inch and 98 kips, respectively. The 20 story prototype has collector beam stiffness and strength of 86 kips/inch and 108 kips, respectively. The fundamental periods for the 3, 9, and 20 story prototypes are 1.1, 3.3, and 3.4 seconds, respectively.

The existing design procedure for SC-MRFs classifies the designs as special moment frames in the ASCE 7-05. The 3 story prototype was designed following the Equivalent Lateral Force (ELF) procedure. Because the fundamental periods for the 9 and 20 story prototypes are larger than the maximum permitted by the code for using the ELF procedure, the Modal
Response Spectrum Analysis (RSA) was used for the design of the two taller prototypes. The distinction between the two procedures is significant because of the difference in their recommended limits for the interstory drift, and the absence of a lower bound for the spectral acceleration in the design response spectrum when using the RSA procedure. Therefore, the RSA standard implicitly permits the design of more flexible steel MRFs than does the ELF procedure.

The existing design procedure for SC-MRFs classifies the designs as special moment frames in the ASCE 7-05. The 3 story prototype was designed following the Equivalent Lateral Force (ELF) procedure. Because the fundamental periods for the 9 and 20 story prototypes are larger than the maximum permitted by the code for using the ELF procedure, the Modal Response Spectrum Analysis (RSA) was used for the design of the two taller prototypes. The distinction between the two procedures is significant because of the difference in their recommended limits for the interstory drift, and the absence of a lower bound for the spectral acceleration in the design response spectrum when using the RSA procedure. Therefore, the RSA standard implicitly permits the design of more flexible steel MRFs than does the ELF procedure.

The interior column sizes were controlled by the strong column–weak beam criterion. The exterior column size was uniformly set at two sizes smaller than the interior column size. The beam size was governed by either (1) beam compactness criteria, or (2) beam local buckling.
criteria based on combined moment and axial load stresses, or (3) decompression moment
criterion required for self-centering. The last criterion requires that $M_d \geq 0.6 M_a$, where M_d is the
minimum decompression moment (point 1 in Fig. 1a), and M_a is the moment at which the energy
dissipating devices change stiffness (point 2 in Fig. 1a). The beam sections in most lower stories
of the 9 and 20 story prototype were controlled by the criterion that prevents connection
decompression under wind forces, i.e. $M_d > M_{wind}$.

Ground Motions

In this study we used a subset of the ground motions available in the Pacific Earthquake
Engineering Research (PEER) Center NGA (Next Generation Attenuation) strong motion
database (Chiou et al. 2008). A selection of 3243 records from 117 earthquakes was used to
develop an attenuation model for generating region-specific artificial ground motions, as
described in Pant and Vanmarcke (2009). Two empirical attenuation models were developed to
estimate: (1) strong motion intensity measures, such as Arias Intensity and strong motion
duration, and (2) frequency measures, i.e., central frequency and bandwidth factor. These
indicators characterize a ground motion with its amplitude, frequency content, and strong motion
duration. The concept for the present attenuation relationship was derived from the model
proposed by Sabetta and Pugliese (1996), and represents an improvement with respect to the
previously attained energy content at lower frequencies and the event variability.

Ground motion indicators, which contribute to a seismic hazard level at a chosen site, are
the magnitude, M, epicentral distance, R, and ε, the measure of uncertainty or deviation of a
ground motion from a predicted level. Two levels of seismic hazard are defined in the NEHRP
(Building Seismic Safety Council 1997) provisions: the design basis earthquake (DBE), with
50% probability of exceedance in 50 years, and the maximum considered earthquake (MCE),
with 2% probability of exceedance in 50 years. The DBE is used in current seismic design
provisions, such as IBC 2000 (International 2000) to establish design earthquake forces, and is
taken as 2/3 of the intensity of the MCE.

Through disaggregation, using a
software framework OpenSHA (Field et al.
2003), possible values of M, R, and ε are found
for the specified hazard levels for the assumed
site at Van Nuys, CA. Spectral acceleration, S_a, which corresponds to the DBE seismic hazard
level, is 0.85g for the 3 story prototype and
0.23g for the 9 and 20 story prototypes. At the
MCE level, S_a is 0.5g for the 3 story and 0.14g
for the 9 and 20 story prototypes. For the
identified values of spectral acceleration, we
obtained multiple combinations of prototype-
specific M, R and ε values which, with the site
soil conditions, provide necessary input for the
attenuation relationship.

Selection of artificially generated ground
motions from the full event set was based on
their spectral accelerations at the 1st and 2nd mode periods of the prototype SC-MRFs. The 9 and 20 story prototypes have similar periods, therefore the subset of ground motions at the DBE level, shown in Fig. 3, was used in the nonlinear analyses of both buildings. The response design spectrum (IBC(DBE)) is the target spectrum. A tolerance factor was determined to include exactly 1,000 events at the DBE level and another 1,000 at the MCE level within the boundary at T1 and T2 of the prototypes. For the 3 story prototype the tolerance factor was found to be 1.329 at the DBE level, and 1.555 at the MCE level; for the 9 and 20 story prototypes, the tolerance factors at the DBE and MCE levels were 1.518 and 1.574, respectively. Therefore, four subsets of synthetic records were selected for the three prototypes.

Nonlinear Structural Model and the Design Procedure Parameters

For the nonlinear time history analyses of the prototype buildings, 2-D models were developed in OpenSees (McKenna and Fenves 2006). The mass of the structure is concentrated at the floor levels of the “leaning column”, which is connected to the frame through nonlinear axial springs representing collector beams. The frame model consists of elastic and inelastic elements for beams and columns, and has connection elements modeling the gap behavior, panel zone, ED device, shear support, post-tensioning strands, and the transfer of inertia forces from the floor diaphragms to the SC-MRFs through the collector beams. Fig. 4 shows the model of the beam to column connection.

Seismic demand obtained in the simulations was compared to the predicted demand values given in the design procedure outlined by Garlock (2007). The predicted roof drift demand, $\theta_{\text{roof, DBE}}$ in Table 1, is based on the equal displacement principle, and it depends on the period correction factor, C_T, damping correction factor C_ξ, and the response modification factor, R, used to define the design base shear, V_{des}. The total height of frame above ground is h_f and $\Delta \text{el-des}$ is the roof displacement from the linear elastic analysis of the frame corresponding to V_{des}. The story drift demand, θ_{DBE}, is estimated directly from the roof drift, by using a factor C_θ, as seen in Eq. 2. The value for C_θ is based on studies on a 6 story prototype by Rojas (2005), and is used in the design of all three prototypes. Garlock (2002) shows that PT frame beams, columns, and panel zones remain essentially elastic under earthquake loading. Therefore, the elastic story drift, θ_e, is subtracted from the total story drift, θ to estimate the connection relative rotation demand, θ_c, (i.e., $\theta_c = \theta - \theta_e$) as shown in Eq. 3 (Table 1). K_Δ is the initial (elastic) frame stiffness equal to the base shear divided by the roof displacement and V_{DBE} and V_{MCE} are the base shear demands for the DBE and MCE considering overstrength factors. Eqs. 1, 2 and 3 define the predicted demands, i.e., the
“design” values, which are compared to the demands obtained in the nonlinear analyses.

Table 1. Seismic demand predicted by the design procedure.

<table>
<thead>
<tr>
<th>Roof drift (Eq. 1)</th>
<th>Story drift (Eq. 2)</th>
<th>Relative rotation (Eq. 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{\text{roof, DBE}} = \frac{C\zeta R A_{\text{d, des}}}{h_f})</td>
<td>(\theta_{\text{DBE}} = C_\theta \theta_{\text{roof, DBE}})</td>
<td></td>
</tr>
<tr>
<td>where: (C_\theta = 1.5)</td>
<td>(\theta_{r, DBE} = \theta_{\text{DBE}} - \frac{C_\theta V_{\text{DBE}}}{K f h_f})</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of SC-MRF Response to the Predicted Demand and Limit State Reliability

Fig. 5 shows the maximum demands obtained in the nonlinear analyses for the roof drift, \(\theta_{\text{roof}} \), story drift, \(\theta \), and beam-column relative rotation, \(\theta_r \). The predictions for the 3 story prototype are close to the upper bound of the data obtained in the analyses. The 9 story predictions compare reasonably well to the recorded data, and the 20 story predictions are approximately equal to the average data. These observations are summarized in Table 2, in terms of the percent probability of exceeding the design values.

It was noted earlier that a value of \(C_\theta = 1.5 \) was used to design all prototypes. Table 2 shows average \(C_\theta \) values obtained for each prototype. Based on these observations, we recommend \(C_\theta \) to equal 1.1 for buildings with 3 stories or less, 1.6 for 9 stories or more, and to interpolate inbetween. The impact of \(C_\theta \) on the design predictions is shown in Eqs. 2 and 3 from Table 1. There is a linear correlation between \(C_\theta \) and the predicted maximum values for \(\theta \) and \(\theta_r \). The effect of \(C_\theta \) on the relationship between \(\theta \) and \(\theta_r \) (as shown in Eq. 3) can be seen in Fig. 6. The design lines representing Eq. 3 are based on \(C_\theta = 1.5 \), and are shown next to the data obtained in the nonlinear analyses. In Fig. 6 we see that the design equation best matches the recorded data for the 20 story prototype, whereas the 9 story, and most prominently the 3 story prototype, require an improved prediction. By revising \(C_\theta \) the design lines move towards the data only modestly. Note that changing \(C_\theta \) only affects those designs controlled by the seismic forces, namely the 3 and 9 story prototypes, since the 20 story prototype was largely controlled by a wind load criterion, as mentioned previously. By introducing a multiplier \(F \) to Eq. 3 we arrive at Eq. 4, which correlates well with the data for all prototypes of a given number of stories, \(n \), as shown in Fig. 6.

\[
\theta_{r, DBE} = \theta_{\text{DBE}} - F \frac{C_\theta V_{\text{DBE}}}{K f h_f}, \quad \text{where: } F = \frac{n(n-2)}{10} \leq 1.0
\]

Fig. 8a plots a cumulative distribution function (CDF), which is another way of presenting the data in Table 2, and it indicates the probability that \(\theta_r \) will be at most that indicated on the abscissa. It is seen, for example, that there is an 80% probability of not exceeding the design value of \(\theta_r = 0.021 \) in the 20 story prototype in a seismic event at the MCE level. For the limit state reliability analysis we use the seismic demand curves (Fig. 8a) and the capacity curves (Fig. 8b) to find the combined probability of the demand exceeding the capacity.
Figure 5: Maximum recorded and predicted seismic demand in every prototype for DBE and MCE ground motions
at each level. The capacity curves are based on Eq. 5, which is a closed form solution that relates relative rotation at the point of strand yielding ($\theta_{r,s}$) to the beam and strand stiffness (k_b and k_s, respectively), number of PT strands (N_s), strand yield force (t_y), initial posttensioning force (t_0), and beam depth ($2d_2$), at each level (Garlock 2007). Based on an assumption that t_y (a material-related uncertainty), and t_0 (a construction-related uncertainty), are random variables, Eq. 5 yields a normally distributed capacity curve (Dobossy et al. 2006). By convolving the demand and capacity distributions for each level,

<table>
<thead>
<tr>
<th>Level</th>
<th>Design predictions from Eq. 3</th>
<th>Design predictions from Eq. 4 (with F modification)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ_{roof}</td>
<td>θ</td>
</tr>
<tr>
<td>3 story</td>
<td>DBE 24</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MCE 15</td>
<td>1</td>
</tr>
<tr>
<td>9 story</td>
<td>DBE 12</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MCE 24</td>
<td>20</td>
</tr>
<tr>
<td>20 story</td>
<td>DBE 28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>MCE 40</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 2. Percent probability of exceeding design values θ_{roof}, θ and θ_r, and C_θ factor

Figure 6. Evaluation of design predictions based on seismic response data
we arrive at the probability of reaching a limit state of strand yielding, as shown in Eq. 6. Using this methodology, we find that the probability of strand yielding in the 3 story prototype is negligible. It varies between 0 and 4% in the 9 story, and between 0 and 7% in the 20 story prototype, with the exception of the 2nd and 3rd levels in the 20 story building, where that probability reaches 12% and 15%, respectively.

\[
\theta_{rs} = \frac{N_s(t_y - t_0)}{2d_2} \cdot \frac{k_b + k_s}{k_b k_s}
\]

\[
P_{LS} = P[D>C] = \sum_{all_d} P[D>C | D = d] \cdot P[D = d]
\]

Summary and Conclusions

This paper presented a continuation of the previous study on developing a reliability-based methodology to evaluate the sensitivity of SC-MRFs to specific design parameters and to validate or improve the design recommendations given previously by Garlock et al. (2007). Three prototype frames (3, 9 and 20 story high) are subject to Monte Carlo simulations of realistic synthetically generated ground motions and peak responses are recorded. The results indicate that the probability of exceeding the design values (such as roof drift, story drift and beam-column relative rotation) varies slightly with prototype height, and is consistent with the results obtained in an earlier study, which used 40 natural, unscaled seismic records. These findings validate the use of realistic, synthetically generated ground motions in probabilistic reliability-based design, in areas where representative natural records are scarce.

The effect of the design parameter \(C_0 \) on the estimated demand values was investigated. An improved predictive relationship between the beam-column relative rotation and the story drift is proposed. Future work involves redesigning of the frames with this new prediction and evaluating the response of the new design.

The probability of system failure based on reaching the limit state of strand yielding is calculated. Acceptable level of such probability is based on an engineer’s judgment, therefore these results can be used to inform the performance-based design decisions.

In general, prototype responses were found to be adequate, as was the reliability-
based methodology for developing the performance-based design procedure. Future work includes plans for a comprehensive limit state reliability analysis, where limit states other than PT strand yielding would be investigated.

Acknowledgements

This material is based upon work supported by American Institute of Steel Construction (AISC) and the National Science Foundation (NSF) under Grant No. 0420974. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. The authors would also like to thank Jie Li, Mark Dobossy and Raghav Pant for their contributions.

References