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ABSTRACT 
 
 Finite-element modeling of RC structures involves making a series of 

assumptions related to the distribution of forces and deformations within the 
structure.  In an extensive variety of possible modeling strategies, the engineer is 
challenged to build an effective numerical model which can be used to quantify 
the performance of the structure in an efficient manner.  In this study a 
fundamental component of the FE modeling which is the discretization of the 
model is discussed.  The influence of the adopted discretization scheme on the 
simulated response is presented for a set of representative RC components.  Both 
displacement-based and force-based beam-column finite-elements with two nodes 
are considered in the analysis.  The results obtained using alternative meshing 
schemes are compared to estimates obtained using the empirical approach of the 
equivalent plastic hinge length method, as well as against experimental evidence. 
 Additionally, the impact of the adopted meshing scheme on the predicted 
dynamic response of structures is investigated.  The response of a series of RC 
columns and walls tested on shaking table are considered for this purpose.  The 
simulated maximum and residual displacements are compared to the measured 
values.  Based on the obtained results, preliminary recommendations are 
developed for the identification of appropriate meshing schemes.  

 
 

Introduction 
 
 During the FE analysis of the inelastic response of RC structures by means of beam-
columns elements, discretization scheme and element formulation have a direct influence on the 
simulated distribution of curvatures along the structural elements, i.e. beam, columns and walls.  
Many researchers have investigated localization phenomena related to the distribution of post-
elastic strains in nonlinear finite-element analysis under monotonic loads (e.g. Bathe 1996, 
Coleman and Spacone, 2001).  In this study, a series of discretization strategies are developed for 
modeling slender RC structures and their performance in predicting the dynamic inelastic 
response is assessed using shaking table test data.  Particularly, important aspects relevant to the 
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selection of discretization schemes for capacity designed reinforced concrete (RC) structures 
deforming predominantly under flexure are investigated. 
 
 The analyses presented here where carried out in the framework of a broader study 
aiming at developing a methodology to improve the seismic performance assessment of RC 
structures making use of post-earthquake residual displacements (Yazgan 2009). Key questions 
at the beginning of the study where: (1) How reliably can residual displacement be predicted and 
(2) which numerical models are better suited to predict residual displacement. Both questions are 
addressed in this paper. 
 

Beam-Column Finite Element Models 
 
 Slender RC structures are typically modeled using beam-column finite elements with 2 
nodes per element (CEB 1996).  In beam-column element modeling, the response of individual 
structural components is defined according to functions called “element formulation”.  These 
functions relate the assumed local force-deformation or stress-strain behavior to the force-
deformation behavior of the whole element.  Post-elastic flexural deformations typically do not 
localize to a critical section but spread along the RC components.  Several finite element 
formulations have been proposed to capture this spreading (CEB 1996).  These formulations can 
be grouped into two classes based on the approach that is adopted in their derivation: (1) the 
displacement- and (2) the force-based formulation. 
 
Displacement-based Formulation 
 
 In the displacement-based element formulation (i.e. stiffness-based approach), the 
curvature and the axial deformation at any section along the element are expressed as a function 
of the member end-deformations (Bathe 1996).  This relationship is defined by means of 
displacement shape interpolation functions.  Often, the curvature is assumed to vary linearly in a 
single element.  Therefore to be able to capture the nonlinear spread of plasticity along the RC 
component, the latter must be discretized into a number of displacement-based elements. 
 
Force-based Formulation 
 
 The force-based element formulation (i.e. flexibility-based approach) is based on the 
interpolation of member end-forces to identify the internal section forces (Spacone et al. 1996).  
As a result, for a linear variation of the moment along the component, the behavior of the latter 
can be captured by utilizing a single element even for deformations reaching beyond the elastic 
limit.  However, due to localization issues related to deformations, the adopted meshing scheme 
has still an influence on the simulated response (Coleman and Spacone 2001).  Therefore, 
regions where post-elastic deformations are likely to be computed must be discretized such that 
these deformations do not localize abruptly or spread excessively.  
 
Important remark 
 
 It is important to note that beam-column elements implemented according to both the 
displacement based and the force based formulations typically assume that plane sections along 



the element remain plane during the analysis. This assumption implies that only the component 
of the spread of plasticity due to hardening can be captured correctly while the component due to 
tension shift, which is typical for RC structural elements, can not. 
 

Shaking Table Test Data 
 
 The results of shaking table tests are utilized to assess the reliability and the sensitivity of 
local and global deformations simulated numerically.  To this end, 12 shaking table tests are 
considered.  Important properties of the relevant RC test units are presented in Table 1.  The first 
4 test units (i.e. A1, A2, B1, B2) are the RC columns tested by Hachem et al. (2003).  Column 
EBII07 is an RC unit tested at the ETH Zurich.  WDH1 to 6 are the RC walls tested by Lestuzzi 
et al. (1999).  CAMUS3 is a 5 story RC wall tested by Combescure and Chaudat (2000). 
 
Table 1. Important properties of the test units (columns 3-7), yield and ultimate drift limits 

(columns 8-9), and measured maximum and residual drift ratios (columns 10-12). 
# Unit Scale ns  ρl nax Lp Average drift, da [%] da,r/da,m 
  [-] [-] [%] [%] [mm] Yield, da,y Ultimate, da,u Maximum, da,m Residual, da,r [-] 
1 A1 1/4.5 - 1.17 5.7 336 1.03 9.2 5.10 0.55 0.11 
2 A2 1/4.5 - 1.17 5.7 336 1.03 9.2 3.56 0.12 0.03 
3 B1 1/4.5 - 1.17 5.7 336 1.03 9.2 4.98 0.62 0.13 
4 B2 1/4.5 - 1.17 5.7 336 1.03 9.2 2.98 0.07 0.02 
5 EBII07 - - 0.96 9.0 192 2.11 16.8 8.12 0.38 0.05 
6 WDH1 1/3 3 0.48 2.0 311 0.39 1.7 0.71 0.01 0.02 
7 WDH2 1/3 3 0.48 2.5 307 0.39 1.8 2.22 0.08 0.04 
8 WDH3 1/3 3 0.47 1.8 352 0.39 2.1 1.84 0.13 0.07 
9 WDH4 1/3 3 0.47 1.8 356 0.39 2.6 1.52 0.21 0.14 
10 WDH5 1/3 3 0.60 1.8 354 0.45 1.9 1.2 0.11 0.09 
11 WDH6 1/3 3 0.60 1.6 370 0.45 2.1 1.22 0.12 0.10 
12 CAMUS3 1/3 5 0.72 4.0 539 0.24 2.7 0.83 0.13 0.15 
ns: Number of stories;  ρl: Longitudinal reinforcement ratio; nax: Axial load ratio; the plastic hinge length Lp as well 
as da,y and da,u are estimated according to the recommendations by Priestley et al. (2007). 
 
 For each unit, only the first dynamic test that resulted in inelastic deformations is 
considered in this study.  All test units are slender and were provided sufficient transverse 
reinforcement to prevent a shear failure.  In the relevant test reports it is reported that the cracks 
that opened during the considered tests were mainly horizontal and located in the bottom 
segment of the test units, hence confirming that they behaved predominantly in flexure. 
 

Modeling of the Test Units 
 
 The finite-element models considered here are built using OpenSees 
(McKenna et al. 2007).  A fiber-section model is employed to represent the flexural hysteretic 
behavior at the section level.  The uniaxial stress-strain behaviors of the reinforcement and of the 
concrete fibers are modeled using the Steel02 and the Concrete04 models, respectively.  Two 
alternative element formulations, i.e. (1) the displacement-based and (2) the force-based 
formulation, are adopted to model the test units.  Discretization strategies are established to 
achieve a consistent modeling for the entire set of tests.  When establishing these discretization 
strategies, two issues are considered: (1) the strain localization in FE models and (2) the spread 



of plasticity in RC members. The strain localization issue in FE modeling refers to the sensitivity 
of the simulated strain distribution to the adopted displacement interpolation functions and the 
numerical integration scheme. The spread of plasticity refers to the spreading of deformations in 
plastic hinge regions of RC components that yield in flexure.  The processes of establishing the 
discretization strategies for the force- and displacement-based element models are presented 
below. 
 
Discretization Strategies 
 
Displacement-based Element Models (DF) 
 
 The models employing the displacement-based fiber-section (DF) element formulation 
are modeled using the dispBeamColumn element of OpenSees (McKenna et al. 2007).  Cubic 
Hermitian polynomials are utilized as the shape interpolation functions for the displacements 
transverse to the element axis.  Thus, the curvature varies linearly along each element.  In the 
models considered here, two Gauss-Legendre integration points are utilized in each element. 
 
 In order to demonstrate the strain localization issue, three alternative models of column 
EBII07 are considered (Fig. 1a).  In all three models, two displacement-based elements are used. 
 In all three models, the lowest node (i.e. the fixed support) is located at the strain penetration 
depth Lsp computed according to Priestley et al. (2007).  The length L1 of the bottom element is 
different for each model.  The equivalent plastic hinge length Lp, also computed according to 
Priestley et al. (2007), is employed as an index value for L1.  For the first, second and third 
model, L1 is equal to 0.5Lp, Lp and 2Lp, respectively.  The horizontal force applied at the top 
node versus average drift behaviors obtained using the three models are plotted in Figure 1b.  
The average drift ratio corresponding to a significant drop in shear resistance is marked for each 
model.  The drop corresponds to the exceedance of ultimate compressive strain for the confined 
concrete fibers at the lowest integration section (S1).  The average drift exhibited when the 
resistance drops, increases with the increasing of L1.  The primary reason behind this is the 
dependence of the simulated curvature distribution to the discretization (Fig. 1c).  In all models, 
the plastic deformations are localized within the lowest element.  Hence, the drift corresponding 
to the failure at S1 is the largest for the model with the longest L1. 
 
 As already mentioned, in RC members deforming under flexure, post-elastic 
deformations spread along the length of the member. The exact prediction of the distribution of 
those inelastic deformation is a challenging task and the estimation of the corresponding global 
deformations is made difficult by the fact that due to tension shift sections do not remain plane, 
hence – strictly speaking – curvatures can no longer be defined. However, the concept of 
curvature as a measure of local deformation and the double integration thereof to obtain global 
deformations is very appealing to engineers. For this reason, a common approach for predicting 
the ultimate displacement capacity of such an RC member consists in assuming the idealized 
curvature distribution shown in Fig. 2a and whose integration allows the estimation of the 
ultimate drift capacity shown in Fig. 2b. In this so called plastic hinge method, the length over 
which a constant plastic curvature is assumed is called the plastic hinge length Lp. 
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Figure 1.  Discretization schemes for modeling column EBII07, where L1 is the length of the 
bottom element (a), base shear versus average drift relationship obtained using 
displacement-based elements (b), and curvature profiles simulated when the lowest 
integration section S1 reaches the ultimate curvature φu (c). 

 
 The idealized curvature distribution in Fig. 2a has a shape similar to that of the simulated 
curvature distributions in Fig. 1c.  This similarity suggests L1=Lp to be a suitable discretization 
strategy.  For the DF model with L1=Lp, Fig. 1c shows that the curvature φ1 at the integration 
section S1 reaches φu when the average drift of the column is equal to 14.9%.  This value is very 
close (89%) to the du predicted using the plastic hinge method shown in Fig. 2b.  The suitability 
of this discretization scheme (L1=Lp) was also investigated for the other test units listed in 
Table 1.  Pushover analyses were carried out for each test unit.  In each analysis, L1 was made 
equal to a series of values.  Figure  2c shows the drifts obtained in the analyses when φ1=φu at S1 
divided by the ultimate drifts du estimated using the plastic hinge method, confirming the 
discretization scheme L1=Lp to be suitable. 
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Figure 2.  Idealized curvature distribution assumed in the plastic hinge method (a), ultimate drift 
capacity (b), and ratio of the drift – simulated when the curvature at the lowest 
integration section φ1 reaches the ultimate φu – to the ultimate drift du estimated using 
the plastic hinge length method (c) (L1: Length of the bottom element). 

 
 Apart from the discretization scheme, the simulated curvature distribution is also 
sensitive to several other factors such as: the section hysteretic model (e.g. fiber-section model, 
Takeda hysteretic model), the numerical integration rule and the number of integration points.  



An extensive investigation campaign was carried out to address these issues. Because of space 
limitations not all results can be presented here and for more details the reader is referred to 
Yazgan (2009). 
 
Force-based Element Models (FF) 
 
 The models employing the force-based fiber-section (FF) element formulation are 
discretized using the nonlinearBeamColumn element available in OpenSees 
(McKenna et al. 2007).  This element is based on the linear interpolation of forces and moments 
along its length.  The distribution of curvatures is not constrained by any specific deformation 
shape function and the end displacements are related to the section deformations in an integral 
sense (Coleman and Spacone 2001). 
 
 The sensitivity of the predicted response to the discretization scheme is demonstrated by 
analyzing again the alternative models of column EBII07 shown in Fig. 1a. However, in this case 
FF instead of DF elements are used, and a 2-point Gauss-Lobatto integration scheme is utilized 
for all elements. Figure 3a displays the base shear versus average drift relationship for all three 
models, while the curvatures simulated at the integration sections S1 and S2 are plotted against 
the average drift in Fig. 3b.  The models fail when the curvatures at their lowest integration 
section S1 exceed φu.  For all discretization schemes, after the curvature φ1 at S1 exceeds the 
yield curvature φy, the curvature increments at the two sections start to diverge significantly.  
The largest portions of the inelastic curvatures localize at S1. 
 

0 4 8 12 16 20 24
0

2

4

6

8

10

12

14

16

Drift ratio, d [%]

Sh
ea

r
fo

rc
e,

V
[k

N
]

 

 

L1 = 0.5Lp

L1 = Lp

L1 = 2Lp

 
(a) 

0 4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Drift ratio, d [%]

C
ur

va
tu

re
, φ

 [1
/m

]

Ultimate 
curvature

Yield
curvature

S1
S2

L1= Lp

L1= 0.5 Lp

Discretization Section

S1
S2
S1
S2

L1= 2 Lp

(b) 

1.11 1.10
1.15 1.13 1.15 1.12 1.15 1.13

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Drift when φ1=φu , divided by du

L1=2Lp

(c) 
Figure 3.  Base shear versus average drift relationships obtained using force-based elements (a),  

section curvature versus average drift (b), and ratio of the drift – simulated when the 
curvature φ1 at the lowest integration section S1 reaches φu – to the ultimate drift du 
estimated using the plastic hinge length method (c) (L1: Length of the bottom element). 

 
 The element end-displacements that are free of the rigid body modes can be identified by 
numerically integrating the section deformations.  For the numerical integration, a tributary 
length Ltr which is proportional to the weight of the integration section is considered for each 
section.  Simulated curvature distributions similar to the idealized profile shown in Fig. 2a can 
be obtained by setting Ltr,S1 of the section S1 equal to the plastic hinge length Lp.  Accordingly, 
L1 must be equal to 2Lp when a 2-point Gauss-Lobatto integration scheme is utilized.  Note that 
this modeling approach was also recommended by Coleman and Spacone (2001). 



 
 In order to assess the simulation results obtained using the L1=2Lp discretization scheme, 
test units of Table 1 were modeled using force-based elements.  For each unit, the drift ratio 
simulated when the curvature φ1 at S1 reaches the ultimate curvature φu is identified.  As 
depicted in Fig. 3c these drift ratios are found to be in good agreement with the du’s estimated 
using the plastic hinge length method, showing an overestimation ranging between 10 and 15%.  
 
Other Model Idealization Parameters 
 
 The results of the numerical simulations are sensitive to a number of idealization 
parameters other than the adopted element formulation and the discretization scheme. Those 
parameters were established consistently for every test unit.  Details related to establishing the 
uniaxial material models, the damping models, the boundary conditions, the second order effects 
and the analysis algorithm are reported extensively in Yazgan (2009). 
 

Evaluation of the Models 
 
 In this section, the simulated maximum and residual average drifts are compared against 
the experimental evidence.  The ratio of the value measured during the test to the value predicted 
by means of the time-history simulations is calculated for each simulation.  This ratio being 
larger than unity implies that the numerical model underestimates the measured value.  The 
probabilistic character of the ratio is assessed for each modeling approach2. 
 
Accuracy of the Simulated Maximum and Residual Drift Ratios 
 
 The simulated maximum average drift ratio values are plotted against the measured 
values in Fig. 4.  The estimated probabilistic character of the test-to-simulation ratios are 
presented by a dashed line and a shaded region.  The dashed line corresponds to the median ratio 
and the shaded area highlights the region lying between the 10 and the 90 percentile values.  At 
the top of each figure the median and the coefficients of variation (COVs) are presented. 
 
 In Fig. 5, the predicted residual average drift values are compared to the measured 
values.  The numerical models tend to underestimate the residual drifts.  The accuracy of the 
models in terms of predicting the residual deformations is significantly lower compared to the 
accuracy achieved for the maximum deformations; this applies for both element formulations 
(Figs. 5a and 5b).  This is expectable because the accuracy of the simulation at any time step 
depends on the accuracy of the response predicted from the beginning of the simulation up to 
that time step.  As a result, the accuracy of the predicted residual displacements depends on the 
errors exhibited during the full-course of the simulation process.  On the contrary, the peak 
deformation is typically attained at a much earlier time during the response.  Moreover, the 
lower accuracy is also due to the fact that the residual displacements are much smaller compared 
to the maxima.  For the test units considered in this study, the residual average drift ratios are in 

                                                 
2The results from all test units except WDH2 are considered in the identification of the probabilistic character of the 
ratio.  WDH2 failed during the first test due to rupture of a longitudinal reinforcement bar.  However, its results are 
included in the scatter plots of Figs. 4 and 5 to display as an example the probable inaccuracy exhibited in this case. 



the range of 2 to 15% of the maxima (Table 1).  As a result, if the simulation fails to predict both 
the maximum and the residual deformations by the same amount, the resulting relative error 
associated with the predicted residual value is much larger than that associated with the 
maximum.  The reasons behind the inaccuracy of the simulated residual displacements are 
investigated and extensively discussed in Yazgan (2009). 
 

Figure 4.  Comparison of the measured and the simulated maximum average drift ratios da,m [%] 
obtained using displacement-based (a) and force-based (b) elements. 
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Figure 5.  Comparison of the measured and the simulated residual average drift ratios da,r [%] 
obtained using displacement-based (a) and force-based (b) elements. 

 
Sensitivity of the Accuracy of the Simulated Drift Ratios 
 
 In order to assess the sensitivity of the accuracy of the predicted maximum and residual 
average drift ratios to the adopted discretization scheme, the time-history simulations are 
repeated for each test unit using different values of the length L1 of the bottom element, i.e. the 
element where all plastic deformations are concentrated.  For each model, the length L1 
calculated according to the discretization strategies explained in the previous section are referred 
to as the reference length L1,Ref.  For the sensitivity analyses, the length L1 for each unit is set 
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equal to specific ratios of L1,Ref and the response history simulations are repeated.  For each set of 
simulation results, the median and the COV of the test-to-simulation ratios are calculated.  The 
accuracy of the residual displacements is found to be significantly sensitive to the discretization 
scheme (Fig. 6).  On the other hand, this sensitivity is less pronounced in the case of maximum 
displacements.  The results obtained for the displacement-based (DF) and force-based (FF) 
element models show similar trends.  
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Figure 6.  Sensitivity of the accuracy of the simulated maximum (a) and residual (b) average drift 
ratios to the discretization scheme (L1: Length of the bottom element). 

 
Conclusions 

 
 The discretization of the structure into finite-elements is an important step in the 
numerical assessment of the inelastic response of structures.  Several factors such as the location 
of the essential degrees of freedoms of the model, the element formulation and the localization of 
strains in the numerical model should be taken into account appropriately when discretizing 
structures (Bathe 1996, Coleman and Spacone 2001).  Spreading of plasticity affects the 
deformation capacity of RC structures significantly, hence needs also to be taken into account 
appropriately. Common beam-column element formulations assume plane sections remaining 
plane, hence not allowing a direct consideration of spreading of plasticity. 
 
 To circumvent this limitation, the discretization strategies proposed here aims at 
achieving a simulated curvature distribution that is in agreement with the idealized distributions 
assumed in the plastic hinge length method.  The accuracy of the simulated response histories 
obtained using the proposed discretization schemes are investigated by numerically reproducing 
a set of shaking table tests.  The comparison of the calculated response histories against those 
measured during shaking table tests indicates the following points: 
 

• The adopted finite-element discretization scheme has a strong influence on the accuracy 
of the simulated residual displacements.  Its influence on the simulated maximum 
displacements is smaller than the one on residuals. 

• The accuracy of the considered finite-element models, in terms of estimating the residual 
displacements is found to be much lower than the accuracy of the peak displacements. 

a) b) 



• The statistical comparison of the experimental and the numerical results allowed the 
quantification of the model error associated with the estimation of both maximum and 
residual displacements. 

• The idealized curvature distributions assumed in the plastic hinge length method can be 
used as a benchmark to assess the soundness of the curvature distributions obtained using 
a given discretization scheme and element formulation. 

• Given that the components are discretized to yield a simulated curvature distribution that 
agrees with the plastic hinge length method, the adopted element formulation do not 
significantly influence the accuracy of the simulated displacements. 
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