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ABSTRACT 
 
 In this article, using a Bayesian approach, in order to estimate the seismic demand 

of Steel Moment-Resisting Frames (SMRFs) at any given Intensity Measure (IM), 
two probabilistic models, Probabilistic Seismic Demand Model (PSDM), not 
included collapse probability, and Collapse Probability Model (CPM), are 
developed. With the aim of selecting the best PSDM, 13 different IM parameters 
consist of one or more spectral accelerations are defined and evaluated. The 
Bayesian regression results show that for all defined IM, a linear relation between 
the logarithm of IM and the logarithm of demand parameter, drift here, is the best 
form to define the PSDM, but if a single spectral acceleration is used to define the 
IM, it is impossible to introduce a unique parameter as IM for all type of SMRFs, 
because a specific spectral acceleration with the most accuracy to estimated the 
seismic demand of a stiff frame, may change to the weakest estimator in a 
deformable frame and  vice versa. On the other hand, if the IM is defined by using 
the combination of two or more spectral acceleration, one can find a unique IM 
with almost same accuracy for all modeled frames. Also the results show that a 
normal distribution is the best probabilistic model to define the CPM. 

   
Introduction 

 
 In recently developed performance based design engineering frameworks, estimation of 
seismic demand is an essential part to describe the performance of structure. The most 
challenging in this estimation is the large uncertainty associated with the seismic events and 
structural response demands. Because of this uncertainty, can be described in term of those 
originating from randomness (aleatory) and modeling errors (epistemic), using a probabilistic 
method to treatment of both randomness and uncertainty is required in estimation of seismic 
demand. This method is generally known as Probabilistic Seismic Demand Analysis (PSDA). 
 PSDA is an approach for calculating the mean annual frequency (or annual probability) 
of exceeding a specified seismic demand for given structure at a designated site (Cornell 1996). 
PSDA combines a ground motion Intensity Measure (IM) hazard curves for designated site with 
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the demand results from Nonlinear Dynamic Analysis (NDA) of the given structure under a suite 
of earthquake ground motion records through the application of the total probability theorem 
(Luco 2002). If the maximum inter story drift (denoted by DR) is selected as the demand 
parameter, the following mathematical expression can be used to calculate the probability that 
the drift exceeds the value x, P[DR >x]: 
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In this equation the term HIM(y) means annual frequency that IM at a given site will equal or 
exceed the value y and notation |d…| means its differential with respect to IM, evaluated at y. 
This term is usually computed through a probabilistic seismic hazard analysis and it is not the 
object of this study. The main object of this study is the term P[DR >x | IM=y], which means the 
probability of DR exceeding the value x given (i.e., conditioned on knowing) that IM equals y. In 
order to calculate this probability in a reliable manner, along with the probability of exceeding, 
the probability of total collapse of structure at any given IM level must be considered. Hence the 
following two part equation is proposed to calculate this probability (Tothong and Cornell 2006): 
 

           IMCIMNCIMC PyIMxDRPPyIMxDRP ||| ]|().1(]|[ +=>−==>                                    (2)  
 
As seen in this expression, the target probability at each IM level is divided into two mutually 
exclusive and collectively exhaustive events, the probability of Collapse (PC|IM) and the 
probability of exceeding under the condition of Non-Collapse (PNC|IM).The aim of this study is to 
develop a fully Bayesian framework to calculate these two probabilities for generic Steel 
Moment-Resisting Frames (SMRFs). 
 In the framework of data analysis based on probability models, three principal 
approaches are possible: the method of moments, the method of maximum likelihood and the 
Bayesian updating method. Because of its ability to simultaneous modeling of randomness and 
uncertainty in estimating the seismic demand, the Bayesian approach is selected to provide a 
framework for incorporating engineering judgment and subjective information in this study. Also 
an Incremental Dynamic Analysis (IDA) is applied to generate required data for statistical 
analysis. In the following parts, after introducing the fundamental of Bayesian statistics, modeled 
generic SMRFs, selected ground motion records and defining the selected IM parameters, an 
IDA is carried out to generate two databases. The first database, including the non-collapse 
results of IDA, along with 13 different IM is applied to define the best demand model and 
remaining results, which lead to collapse of frame and gathered in second database, are used to 
establish a collapse probability model, using the Bayesian approach.       
 

Bayesian Statistical Approach 
 
 In this article, the Bayesian statistical approach is used to estimate all unknown 
parameters and required relations. This method can properly account for prevailing uncertainties 
such as statistical and model uncertainties (Gardoni et al. 2002). Here only a brief description of 
this method is presented, additional details of can be found in (Der Kiureghian, 1999). Let 
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be a mathematical model for predicting variable y in terms of a set of observable variables x, in 
which d(x,θ) is the deterministic model, θ is the vector of unknown model parameters, ε is a 
normal random variable with zero mean and unit standard deviation, representing the uncertainty 
in the model and σ is the unknown model standard deviation. So the set of unknown parameters 
must be estimated by using Bayesian statistics and available information is Ф(θ,σ). In the 
Bayesian approach, this is done by using the well-known updating rule: 
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Where p(Ф) can be viewed as the prior distribution reflecting the state of knowledge about Ф 
prior to obtained the information, L(Ф) likelihood function, which is a function proportional to 
the conditional probability of making the observation on x and y for a given value of the 
parameters and reflect the objective information gained from the information, f(Ф) is posterior 
distribution reflecting the updated information about Ф and c is a normalizing factor necessary to 
ensure that the posterior distribution integrates to one. In this article, the regression tool relies on 
Markov chain Monte Carlo simulation techniques and yields fully Bayesian posterior mean or 
posterior mode estimation. Details can be found in (Brezger and Lang 2006 and 2008). 

 
Definition of Used Generic Steel Moment-Resisting Frames 

 
 In this article, NDA is carried out using a family of two-dimensional single-bay generic 
SMRFs with number of stories equal to 3, 6, 9, 12 and 15, and first mode periods equal to 0.3, 
0.6, 0.9, 1.2 and 1.5 second respectively. Some main characteristics of this family of frames are 
as follows, more details can be found in (Medina and Krawinkler 2005): 

• The same mass is used at all floor level 
• Relative stiffness are turned so that the first mode is straight line 
• Plasticization just occurs at the end of the beams and the bottom of the first story 

columns 
• Frames are designed so that simultaneous yielding at all plastic hinge locations is attained 

under a parabolic (NEHRP, k=2) load pattern. 
• Moment-rotation hysteretic behavior is modeled by using rotational springs with peak-

oriented hysteretic rules and cyclic deterioration parameter equal to 30 and 3% strain 
hardening.  

 
Selection of Ground Motion Records 

 
 An appropriate estimation of seismic demand through NDA requires a suitable selection 
of ground motion records which must represent the seismic hazard condition of target territory at 
different return periods. In this article, using a bin strategy, 80 records are selected from the 
PEER Center Ground Motion Database (http://peer.berkeley.edu/smcat/) and are classified into 
four magnitude-distance bins for the purpose of time history analysis of SMRFs (Medina and 
Krawinkler 2003). The record bins are designated as follows: 

• Large Magnitude-Short Distance Bin, LMSR, (6.5 < Mw < 7.0, 13 km < R < 30 km), 



• Large Magnitude-Long Distance Bin, LMLR, (6.5 < Mw <7.0, 30 km < R < 60 km), 
• Small Magnitude-Short Distance Bin, SMSR, (5.8 < Mw < 6.5, 13 km < R < 30 km), and 
• Small Magnitude-Long Distance Bin, SMLR, (5.8 < Mw < 6.5, 30 km < R < 60 km). 

 
Definition of Selected IM Parameters  

 
 In this article, 13 different parameters are defined and evaluated as IM parameter. All of 
these IM parameters consist of one or more spectral parameters. The used spectral acceleration 
to define these IM parameters are the peak ground acceleration (PGA) and first, second and third 
mode spectral acceleration (Sa1, Sa2 and Sa3). The following parameters are used as IM parameter: 
 
Table 1.     Definition of 13 IM parameters consist of one, two or more spectral accelerations  
 

IM No:1 PGA  IM No:8 2
2

2
1 aa SS +  

IM No:2 1aS  IM No:9 2
3

2
2

2
1 aaa SSS ++  

IM No:3 2aS  IM No:10 22
3

2
2

2
1 PGASSS aaa +++  

IM No:4 3aS  IM No:11 21. aa SS  

IM No:5 
2

21 aa SS +
 IM No:12 3

321 .. aaa SSS  

IM No:6 
3

321 aaa SSS ++
 

IM No:13 4
321 ... PGASSS aaa  

IM No:7 
4

321 PGASSS aaa +++
 

 
Using IDA to Generate the Databases 

 
 In order to generate two required databases, an IDA is applied to the each selected 
ground motion record. Each record is scaled from a lower limit equal to Sa1=0.05g to an upper 
limit, defined as the value of first mode spectral acceleration that leads to collapse of structure, 
with 0.05g steps. At each step, a NDA is carried out and the resulted maximum inter story drift, 
along with the amount of every 13 IM parameters are sent to the one of the defined databases 
(collapse or non-collapse), depends on the structure collapses at the monitored IM level or not. 
Collapse is considered here as the ultimate limit state in which dynamic sideway instability in 
one or several stories of structural system is attained. For instance, the distribution of data points 
between databases is shown in Fig. 1 for 3 and 15-story models. As seen, at the low levels of IM, 
which is the first mode spectral acceleration in this figure, all of the points belong to the non-
collapse database, but at the upper limit IM, all of the 80 records lead to collapse of structures.    
   
 



Calculation the Probability of Exceeding Under the Condition of Non-Collapse 
 
 In this section, using the database of non-collapse data points, the probability of DR 
exceeding the value x when the IM equals y and the collapse is not occurred is calculated. By 
assuming a normal distribution for dispersion, Θ, this probability can be expressed as: 
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The required parameter of this distribution, the mean μln(IM)(y) and standard deviation σ, are 
defined through an Probabilistic Seismic Demand Model (PSDM). The PSDM is a mathematical 
expression relates structure specific demand to the specific IM. Analogous to Eq. 3, a demand 
model is defined as follow: 
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In this article, using Bayesian statistical, the best form and the best IM parameter are selected for 
PSDM. Plotting the resulted drift in IDA against any of 13 defined IM may lead to different 
relation and standard deviation. For example such a plotting is drawn for 3 and 15-story frame 
and two different IM (Sa1 and Sa2) in Fig. 2.  

 
Selecting the Form of PSDM 
 
 By using the Bayesian statistical, it is possible to select the best form of a relation. For 
this aim the following general expression is defined for deterministic part of demand model: 
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The results of Bayesian regression show that for all types of SMRFs and IM, a linear relation 
between the logarithm of IM and the logarithm of demand parameter is the best form to define 
the demand model. Actually for 3, 6, 9, 12 and 15-story frames when the IM parameter No: 2, 2, 
11, 5 and 5 are used, the defined f( ) function has the most similarity to the linear form and when 
the IM parameters No: 3, 4, 4, 4, and 2 are used the most difference is appeared. Fig. 3 shows 
these results. As seen in this figure, even in the case of using the weakest IM, defining a linear 
relation for demand model is completely rational, so the following form is selected for 
deterministic part of the model:  
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Selecting the Best IM Parameter 
 
 After selecting the best form for demand model, the best IM parameter must be selected. 
The standard deviation of models, which can represent the dispersion of data along the median 
value and the efficiency of model, is the best criterion to select the best IM. For this purpose, 
using the Bayesian estimation, standard deviation of demand model is evaluated and regarding 



the used IM parameter in the model represented in Fig 4. 
 As seen in this figure, the defined IMs have totally different accuracy in estimation of 
drift demand in various types of frames. In stiff low-rise 3-story frame, Sa1 is the best estimator 
and Sa2 is the weakest one. In this frame, generally it seems the multi-parameters IMs contain Sa1, 
have the same accuracy in estimation of the demand. It must be noted that in 15-story frame, the 
best estimator of 3-story frame, Sa1, is the weakest one and the weakest estimator of 3-story 
frame, Sa2, is a very accurate estimator, but similar to 3-story frame, multi-parameters IMs have 
the same accuracy in estimation of the demand. Regarding the same conclusion is valid for other 
frames, an important result can be stated; although it is impossible to find a single spectral 
acceleration with same accuracy as an IM parameter to estimate the seismic drift demand for all 
types of frames, it is feasible to set up a unique parameter, consist of two or more spectral 
acceleration, as a general IM parameter to estimate the drift of all SMRFs. 

 
Calculation the Probability of Collapse 

 
 Using the second database, which consists of collapse data points, the probability of 
collapse at each IM level can be calculated. This probability is defined as the number of scaled 
record, which leads to collapse, divided to the number of all records, 80, at any given IM level. 
Fig. 5 shows the calculated collapse probability at each Sa1 level for all modeled SMRFs. As 
seen in this figure, the distribution of collapse probability is completely normal. Hence the 
following expression can be defined as collapse probability model: 
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Using the Bayesian updating rules, the required parameter of this distribution is estimated and 
shown in Table 2. By plotting the results of defined collapse model along with observed data in 
Fig. 5 it seems that although all the defined models have enough accuracy to predict the collapse, 
by increasing the number of stories, the model error slightly increases. 
 

Conclusions 
 
 A Bayesian probabilistic seismic demand estimation incorporating Incremental Dynamic 
Analysis (IDA) has been implemented for Steel Moment Resisting Frames (SMRFs) in two 
conditions, inclusion or exclusion of collapse diagnosed through facing a numerical instability. 
For cases not including collapse, 13 Intensity Measure (IM) parameters ranging from single 
spectral acceleration to combination of two or more spectral acceleration have been evaluated for 
investigating their efficiency, sufficiency and accuracy. It has been concluded that while a linear 
relation between the logarithm of drift demand and logarithm of IM is numerically the best 
choice for a demand model, their efficiency reflected in the standard deviation is not independent 
of the number of stories, i.e. when in 3-story frame the best estimation would be achieved from a 
single parameter IM (first mode spectral acceleration) in the 15-story frame it would be resulted 
the largest standard deviation among all defined IMs. On the other hand while a single parameter 
IM including the second mode spectral acceleration is the most accurate one for the 15-story 
frame, it would be the weakest estimator for 3-story frame. It has furthermore been shown that in 
the case of using multi-parameters IMs, it is possible to introduce a unique parameter, which can 



be used as general IM for all types of SMRFs with the same accuracy and sufficiency. Also in 
the case of IDA including collapse cases, using a Bayesian updating rule, it has been concluded 
that the best probabilistic model for collapse estimation is a normal one while with increasing the 
number of story its accuracy would be slightly decreasing.   
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Figure 1.    The distribution of data points between defined databases, collapse and non-collapse 



 

 
 
Figure 2.    Examples of various relations between defined IM and drift in different SMRFs  
 

 

 
Figure 3.    Evaluated forms for demand model, A: the most similarity to the linear model, B: the 

most difference to the linear model  



 

 

 

 

 

 
Figure 4.    Estimated standard deviation for demand model with various defined IM parameters 



 

 

 
 
Figure 5.    Observed data and defined collapse probability model for different number of stories 
 
 
Table 2.     Estimated parameters for defined collapse model in Eq. 9, using Bayesian estimation 
 

 
Estimated Parameter 

Number of Stories 
3-story 6- story 9-story 12-story 15-story 

Mean (μC) 1.091 1.112 0.808 0.471 0.216 
Standard deviation (σC) 0.279 0.293 0.351 0.454 0.512 

 


