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ABSTRACT 
 
 The linear modal analysis and superposition technique has been used extensively 

in earthquake engineering and seismic applications for decades, and it is extended 
herein to the nonlinear domain by representing the material nonlinearity using the 
force analogy method and computing the modal dynamics using the state space 
method.  Combining these two methods with the modal analysis technique 
provides a significant advancement in developing a simplified, efficient, and 
comprehensive approach to performing nonlinear dynamic analysis.  Numerical 
simulation is performed and the results are compared with Perform-3D 
commercial software to validate the proposed algorithm.  Results show that the 
proposed algorithm possesses high accuracy and computational efficiency. 

  
  

Introduction 
 
 Since the time when Newmark (1959) introduced the linear response history analysis for 
studying seismic effects on civil engineering structures, the development of current seismic design 
procedures relies heavily on this type of analysis technique because of its simplicity in the 
calculation procedure when the structural representation is transformed into the modal coordinates.  
Based on the analysis of a collection of single degree of freedom (SDOF) systems in each 
respective coordinate, the originally proposed response history analysis approach has been 
successfully extended to the popular response spectra approach that can give good representations 
of structural responses due to general seismic characteristics based on a variability of soil types and 
conditions.  Once the maximum modal responses are determined in the response spectra approach, 
modal superposition is employed to determine the maximum structural responses.  
 Although linear dynamic analysis based on linear response spectra approach is so popular, 
it has a shortcoming because all structures are designed with the anticipation that they will behave 
nonlinearly when a major earthquake occurs.  Significant research works have been attempted to 
extend the linear dynamic analysis to the nonlinear domain (Liu 2003 and 2005, Au and Yan 
2008), but presently nonlinear dynamic analysis techniques were employed in seismic design only 
in some special occasions mainly because the analysis itself is a time-consuming process.  Current 
numerical algorithms require significant computation time to update the stiffness matrix to 
accommodate for nonlinearity in structures.  In addition, many simulations need to be considered 
due to the uncertainties in earthquake ground motions.  Therefore, the development of a nonlinear 
dynamic analysis algorithm that is both accurate and efficient remains as a challenge. 
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 In this research, linear dynamic analysis based on modal superposition is extended to 
analyzing structural responses in the nonlinear domain.  This analysis technique can reduce the 
computation time without having to update the stiffness matrix.  This nonlinear modal analysis 
(NMA) algorithm combines the force analogy method and the state space method in the modal 
coordinates.  While the force analogy method is a simple nonlinear analysis tool based on initial 
stiffness and treats material nonlinearity as an equivalent force, the state space method a dynamic 
algorithm that can integrate explicitly to progress the effects of the equivalent force on structural 
responses to the next time step.  Although some results focusing on fully nonlinear dynamic 
analysis have been published through the combination of these two methods (Yang et al. 2004, 
Zhang et al. 2007, Chao and Loh 2007, Wong and Johnson 2009), none of these works studied the 
nonlinear structural responses in the modal coordinate system.  Therefore, it is the objective of this 
paper to demonstrate the accuracy and efficiency of the proposed NMA algorithm and present 
some applications of the analysis method based on reduced number of modes. 
 

Force Analogy Method 
 
 The detailed derivation of the force analogy method has been presented in Wong and Yang 
(1999).  Let the total displacement )(tx  at each degree of freedom (DOF) be represented as the 
summation of the elastic displacement )(tx′  and the inelastic displacement )(tx ′′ , i.e., 
 

 )()()( ttt xxx ′′+′=  (1) 
 
Similarly, let the total moment )(tm  at the plastic hinge locations (PHLs) of a moment-resisting 
frame be separated into elastic moment )(tm′  and inelastic moment )(tm ′′ , i.e., 
 

 )()()( ttt mmm ′′+′=  (2) 
 
The displacements in Eq. 1 and the moments in Eq. 2 are related by the following equations: 
 

 )()( tt T xKm ′′=′    ,      )()()( 1 tt T ΘKKKKm ′′′′−′′−=′′ −  (3) 
 
where )(tΘ ′′  is the plastic rotation at the PHLs, K is the global stiffness matrix, K ′  is the stiffness 
matrix that relates the plastic rotations at the PHLs and the forces at the DOFs, and K ′′  is the 
stiffness matrix that relates the plastic rotations with the corresponding moments at the PHLs.  The 
relationship between plastic rotation )(tΘ ′′  and inelastic displacement )(tx ′′  is:  
 

 )()( 1 tt ΘKKx ′′′=′′ −  (4) 
 
Substituting the two equations in Eq. 3 into Eq. 2 and making use of Eqs. 1 and 4, then rearranging 
the terms gives the governing equation of the force analogy method: 
 

 )()()( ttt T xKΘKm ′=′′′′+  (5) 
 

Nonlinear Modal Analysis 
 
 When the force analogy method is used, the elastic stiffness force is calculated by 
multiplying the initial stiffness matrix K with the elastic displacement )(tx′ .  For an n-DOF 
system with plastic hinges at both ends of each member subjected to earthquake ground motion, 
the dynamic equilibrium equation of motion can therefore be written as 



 )()()()( tttt gMxKxCxM &&&&& −=′++  (6) 
 
where M is the nn×  mass matrix, C is the nn×  damping matrix, )(tx&  is the 1×n  velocity 
response at each DOF, )(tx&&  is the 1×n  acceleration response at each DOF, and )(tg&&  is the 1×n  
ground acceleration vector corresponding to each DOF.  Replacing the elastic displacement )(tx′  
in Eq. 6 by the difference of total displacement )(tx  and inelastic displacement )(tx ′′  gives 
 

 )()()()()( ttttt xKgMKxxCxM ′′+−=++ &&&&&  (7) 
 
Let the modal displacement response )(tq

r
 be the 1×r  vector of the form 

 

 [ ]T
r tqtqtqtt )()()()()( 21
r

L
rrr

ΦqΦx ==  (8) 
 
where Φ is the rn×  modal matrix – a collection of the first r mode shapes in column form: 
 

 [ ]rφφφΦ L21=  (9) 
 
and r is the number of modes to be considered in the analysis, where nr ≤ .  Differentiating the 
modal displacement )(tqr  gives the modal velocity )(tq&

r , and differentiating it one more time gives 
the modal acceleration )(tq&&

r , i.e., 
 

 )()( tt qΦx &r& =    ,      )()( tt qΦx &&r&& =  (10) 
 
Now substituting Eqs. 8 and 10 into Eq. 7 gives 
 

 )()()()()( ttttt xKgMqKΦqCΦqMΦ ′′+−=++ &&
r&r&&r  (11) 

 
Pre-multiplying Eq. 11 by TΦ  and assuming that the damping matrix C exhibits proportional 
damping property, it follows from Eq. 11 that 
 

 )()()()()( ttttt TT xKΦgMΦqKqCqM ′′+−=++ &&
rr&r

r
&&r

r
 (12) 

 
where MΦΦM T=

r
, CΦΦC T=
r

, and KΦΦK T=
r

 are the diagonal modal mass, modal damping, 
and modal stiffness matrices, respectively.  This gives r modal equations of the form: 
 

 ritttqktqctqm T
i

T
iiiiiii ,...,1)()()()()( =′′+−=++ xKφgMφ &&

rr&rr&&rr  (13) 
 
where imr , icr , and ik

r
 are the modal mass, damping, and stiffness, respectively, of the ith mode.  

Note that these r modal equations in Eq. 13 are coupled through the last term of the equation. 
 

State Space Method 
 
 For all r modes given in Eq. 13, let the material nonlinearity term shown on the right side 
of the equation be treated as the equivalent modal force )(tpi

r , i.e., 
 

 rittp T
ii ,...,1)()( =′′= xKφr  (14) 

 
Then representing each modal equation in Eq. 13 in the state space form gives 
 

 ritatptt iiiiiii ,...,1)()()()( =++= rrr&r HGzAz  (15) 



where  
 

 
⎭
⎬
⎫

⎩
⎨
⎧

=
)(

)(
)(

tq

tq
t

i

i
i &r

r
rz    ,      ⎥

⎦

⎤
⎢
⎣

⎡
ωζ−ω−

=
iii

i 2
10

2A    ,      ⎥
⎦

⎤
⎢
⎣

⎡
=

i
i mr1

0
G    ,      ⎥

⎦

⎤
⎢
⎣

⎡
−

=
1

0
iH  (16) 

 

iω  and iζ  are the natural frequency and damping ratio of the ith mode, respectively, and )(tai
r  is 

the modal ground acceleration of the ith mode that is computed by the formula: 
 

 rimtta i
T
ii ,...,1)()( == r

&&
r gMφ  (17) 

 
Solving for )(tg&&  in Eq. 17 gives )()( tt aΦg

r
&& = , where )(ta

r
 is the collection of all ground 

accelerations in the modal coordinates and represented in the form: 
 

 [ ]T
r tatatat )()()()( 21
r

L
rrr

=a  (18) 
 
The term )(tg&&  in Eq. 17, representing the ground acceleration at each DOF, can be expressed in 
terms of the three components of ground accelerations, )(tg X&& , )(tgY&& , and )(tgZ&& , as 
 

 [ ]T
ZYX tgtgtgtt )()()()()( &&&&&&

r
&& haΦg ==  (19) 

 
where h is the 3×n  matrix that contains 0’s and 1’s depending on the direction of each DOF with 
respect to the corresponding the ground motion.  Substituting Eq. 19 into Eq. 17 gives 
 

 [ ] ritgtgtgtgtgtg
m

ta ZiZYiYXiX
T

ZYX
i

T
i

i ,...,1)()()()()()()( =Γ+Γ+Γ== &&&&&&&&&&&&r
r Mhφ  (20) 

 
where iXΓ , iYΓ , and iZΓ  are the modal participation factors for the ith mode in the x-, y-, and z-
directions, respectively. 
 The solution to the first order linear differential equation given in Eq. 15 is  
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where 0t  is the initial time.  The state transition matrix tiAe  of a SDOF system is 
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and diω  is the damped natural frequency of the ith mode computed by the formula  
 

 21 iidi ζ−ω=ω  (23) 
 
Define ttk =+1 , 0ttk = , and 0ttt −=Δ , it follows that Eq. 21 can be discretized and integrated as 
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where  
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)(i
kzr , )(i

kpr , and )(i
kar  are the discretized forms of )(tizr , )(tpi

r , and )(tai
r , respectively, and the 

superscript i in parenthesis denotes the calculation is based on the ith mode.  Once the modal 
displacement and velocity responses embedded in )(i

kzr  are obtained, the modal relative acceleration 
response can be calculated using Eq. 13 as 
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 Finally, the absolute acceleration of the ith mode, )(

,
i
kaq&&r , can be calculated by summing the 

relative acceleration in Eq. 26 with the modal ground acceleration defined in Eq. 17, i.e., 
 

 riaqq i
k

i
k

i
ka ,...,1)()()(

, =+= r&&r&&r  (27) 
 

Numerical Simulation 
 
 Consider the six-story moment-resisting steel frame as shown in Fig. 1.  The mass of each 
and every floor is assumed to be equal to 200 000 kg.  Rigid-ends are included in the modeling of 
the beams and columns.  The stiffness matrix is computed based on the structural configuration 
shown, and eigenvalue analysis is then performed.  The resulting natural periods are summarized 
in Table 1 and the mode shapes are tabulated in Table 2.  Table 1 also shows the natural periods 
obtained from Perform-3D.  A 3% natural damping in all 6 modes of vibration is assumed.  
Finally, the modal mass imr , damping icr , and stiffness ik

r
 are presented in Table 3.  

 

 
 

Figure 1.  Six-story moment-resisting steel frame. 
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Table 1.  Comparison of natural periods of vibration. 
 

Mode Period (Perform) Period (NMA) Mode Period (Perform) Period (NMA) 
1 0.836 s 0.834 s 4 0.117 s 0.116 s 
2 0.303 s 0.302 s 5 0.086 s 0.086 s 
3 0.170 s 0.169 s 6 0.067 s 0.066 s 

 
Table 2.  NMA mode shapes. 

 

Floor Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
2nd 1.000 1.000 1.000 1.000 1.000 1.000 
3rd 2.064 1.709 0.994 0.133 –0.805 –1.715 
4th 2.921 1.703 –0.041 –0.906 –0.304 1.856 
5th 3.697 0.945 –1.089 –0.198 1.043 –1.277 
6th 4.449 –0.548 –0.850 1.044 –0.799 0.564 

Roof 4.995 –2.114 0.977 –0.509 0.250 –0.135 
 

Table 3.  Modal parameters for each SDOF representation. 
 

Type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
Mass 82.46 14.26 5.54 3.69 4.03 10.68 

Damping 62.13 29.69 20.55 19.93 29.53 100.93 
Stiffness 4680.9 6182.5 7618.7 10772.8 21627.3 95387.0 

 
 From Eq. 24 and the computed modal parameters presented in Table 3, the recursive 
equation for the first mode of vibration using a time step size of 01.0=Δt  s can be expressed as  
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where k

T
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r gMφ= .  Similarly, the recursive equation for the second 
mode of vibration becomes 
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where k

T
kp ΘKφ ′′′= 2

)2(r  and 22
)2( ma k

T
k

r
&&

r gMφ= .  Similar recursive equations can be written for other 
modes.  Since the plastic rotation kΘ ′′  couples each and every mode of the response, the analysis 
must be performed with all r modes running simultaneously.  Here, r can range from 1 to 6 with 

6=n  for this example, where 1=r  means the response is calculated using only 1 mode, and 6=r  
means the response is calculated using all 6 modes.  
 Plastic rotations are assumed to be concentrated at one point at the end of the beam and at 
the bottom of the columns only, giving a total of 40 PHLs as shown in Fig. 1.  The moment 
capacity cm  is calculated based on the plastic moment of the member:  
 

 Zm sc σ=  (30) 



where sσ  is the yield stress of steel, or 248.2 MPa, and Z is the plastic section modulus of the 
members.  All beams are subjected to a 21.89 kN/m uniformly distributed gravity loads.  Moment 
versus plastic rotation relationship of all plastic hinges is assumed to exhibit elastic-plastic 
behavior, and the interaction effect between moment and axial force on the moment capacities of 
column members is neglected.  The plastic hinges are assumed to be located at the rigid ends 
without any offset. 
 

 
 

Figure 2.  1995 Kobe earthquake acceleration time history. 
 

 
 

Figure 3.  Comparison of displacement responses between NMA and Perform-3D. 
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 Subjected to the 1995 Kobe earthquake time history as shown in Fig. 2, Figs. 3 and 4 
compare the global displacement and absolute acceleration responses, respectively, between NMA 
using all six modes (i.e., 6=r ) and Perform-3D results.  As shown in the figures, the comparisons 
indicate that there is an excellent match between the two results, particularly in the upper stories, 
but misses some of the peaks for the lower stories.  This demonstrates that NMA is an accurate 
procedure in capturing the global response of the structure.  
 

 
 

Figure 4.  Comparison of absolute acceleration responses between NMA and Perform-3D. 
 
 The NMA algorithm is now used to explore the possibility of reducing the number of 
modes in the analysis while maintaining the accuracy of results.  Subjected to the 1995 Kobe 
earthquake time history, Fig. 5 compares the displacement of the second floor (left side of Fig. 5) 
and the roof (right side of Fig. 5) using reduced number of modes from 1=r  to 5=r .  It is 
observed that the response using only 1 mode (i.e., 1=r ) does not resemble the overall predicted 
response accurately, but the roof displacement response can obtain good accuracy when only 2 
modes are used.  Similarly, the second floor displacement response can obtain good accuracy when 
only 3 modes are used.  This demonstrates the accuracy of the method even when using reduced 
number of modes, suggesting that the nonlinear response spectra approach can be exploited once a 
good understanding of the degree of coupling between modes is obtained. 
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Figure 5.  Comparison of displacement responses using fewer modes. 
 
 The computation times based on the NMA algorithm are summarized in Table 4 for 
different number of modes used in the analysis.  These computation times include forming the 
stiffness matrices, performing the eigenvalue analysis, and calculating the nonlinear dynamic 
responses.  Also shown in the table is the total computation time using Perform-3D.  Since 
Perform-3D requires over 20 times the amount of time needed to complete the analysis, this 
demonstrates the efficiency of the proposed method. 
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Table 4.  Computation time comparisons between NMA and Perform-3D. 
 

 1 Mode 2 Modes 3 Modes 4 Modes 5 Modes All Modes Peform-3D 
Computation 

Time (s) 
1.625 1.718 1.781 1.843 2.031 2.093 ≈48 

 
Conclusions 

 
 A nonlinear dynamic analysis algorithm for computing the dynamic response of structures 
subjected to earthquake excitation based on modal superposition was presented.  This algorithm 
combined the force analogy method and state space method while transforming the analysis into 
the modal coordinates.  While modal coupling occurs because of the material nonlinearity in the 
structural model, this coupling is decomposed back into each mode using an equivalent modal 
force.  Using the proposed algorithm, numerically simulated results were compared with those 
obtained from Perform-3D, and excellent correlation was obtained.  These results demonstrate that 
the proposed algorithm is an excellent computational tool that contains high accuracy and 
efficiency.  More importantly, it has the potential of expanding the scope of the nonlinear response 
spectra approach that may have great impact to seismic design. 
 

Disclaimer 
 
 Certain commercial software may be identified in this paper in order to specify the 
analytical procedure adequately.  Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology (NIST), nor is it intended to 
imply that the software identified are necessarily the best available for the purpose. 
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