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ABSTRACT 
 
 Various methods have been proposed for the design of TMD systems. In these 

methods various assumptions have been made regarding the simulation of the 
acting dynamic force, its location and the criteria used in defining the optimum 
design parameters of the TMD system. On the other hand attention and research is 
increasing about generating or predicting earthquake time history records for 
design purposes. In the present work, a method is suggested for the optimum 
design of tuned mass damper (TMD) system for structures subjected to a specific 
or given earthquake base excitation. The method can be applied to SDOF or 
MDOF shear building structures. In this method, the values of the optimum 
stiffness and optimum damping for a given TMD mass are defined as the values 
that will reduce a specific response of the structure to a minimum value when 
subjected to an earthquake time-acceleration history. The specific response 
selected in the present study is the maximum relative displacement of the 
structure. Thus the problem can be restated as multivariable, nonlinear 
constrained minimization problem. Based on this formulation a MATLAB 
computer program is developed. The program consisted of two main subroutines. 
The first was a dynamic analysis subroutine for the analysis of SDOF or MDOF 
shear building structures with TMD system. This part is embedded in another 
subroutine for nonlinear constrained optimization to compute the optimum design 
parameters of the TMD system. The developed software is then used in selected 
case studies showing convergence of the present study results to optimal solutions 
and efficiency when compared to other methods for designing TMD systems.   

  
 

Introduction 
 
 A  TMD system consists of a mass, spring and a damper. If these properties are properly 
designed and selected, then the device can be effective in suppressing undesirable vibrations 
induced by earthquake or wind loads. Obtaining the optimal design for a TMD system has been 
the goal of many researches for decades. In these researches different assumptions have been 
made regarding the simulation of the acting dynamic force, its location and the criterion used in 
                     
1Associate Professor, Dept. of Civil Engineering, AL-Tahadi University, Sirt, LIBYA. 
2MSc Civil Engineer, Dept. of Civil Engineering, AL-Tahadi University, Sirt, LIBYA. 
 

 

 

Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering
                                                   Compte Rendu de la 9ième Conférence Nationale Américaine et
                                                                10ième Conférence Canadienne de Génie Parasismique
                                                         July 25-29, 2010, Toronto, Ontario, Canada • Paper No 32



defining the optimal design parameters. (Den Hartog 1956) has derived the formula for the 
optimum values of the TMD parameters when attached to a SDOF structure subjected to a 
harmonic load. An extension to it has been made by (Warburton and Ayorinde 1980), (Tsai and 
Lin 1993) where the main mass damping was considered and several types of harmonic 
excitations were examined. Extensive research was also made by (Warburton 1982), (Rana and 
Soong 1998) where formulas for several types of excitations were developed. In these cases, 
harmonic or random excitations were applied either on the main system or at the base of the 
structure. (Sadek, et. al. 1997), suggested a method for estimating the design parameters of tuned 
mass dampers for seismic applications, the criterion used to obtain the optimum parameters was 
to select, for a given mass ratio, the frequency and damping ratios that would result equal and 
large modal damping in the first two modes of vibration. Although many of the above mentioned 
procedures were basically developed for TMD systems attached to SDOF structures, they were 
extended to be applied for MDOF structures (Rana and Soong 1998, Sadek, et.al. 1997).  Hadi & 
Arfiadi (1998) discussed the optimum design of TMD for seismically excited building structures. 
In their design process the multi degree of freedom structures were considered. The genetic 
algorithm was used to find the optimum value of TMD parameters. The numerical examples for 
optimum parameters of TMD system for multi degree of freedom structures were presented to 
show the effectiveness of the design procedures. In their proposed procedure, the optimum value 
the properties of the TMD system can be determined without specifying the modes to be 
controlled. (Lee, et. al. 2006), proposed an optimal design theory for structures implemented 
with TMD. The proposed method allowed for a more extensive application. The optimal design 
parameters of TMD in terms of the damping coefficients and spring constants corresponding to 
each TMD were determined through minimizing a performance index of structural responses 
defined in the frequency domain. As can be noticed from the brief literature review, various 
assumptions have been made regarding the earthquake loading (Harmonic or Random), and 
about the location of the acting force (on the structure or at its base). 
On the other hand, extensive research is being carried out about the prediction of possible 
earthquake parameters for specific site conditions. This includes acceleration-time history, 
response spectra and other parameters. In these works, predicted or artificial acceleration-time 
histories were computed using mathematical methods that take into account the geological and 
seismological parameters of the site at which the structure was intended to be constructed. 
Examples of such research work are the papers published by (Crempien-Laboriea and Oroscob    
 2000), (Rofooei et. al. 2001), (Varpasuo et. al. 2001), (Junn and Jo 2002), (Abdalla and Hag-
Elhassam 2005), (Adnan et. al.2006), (Atkinson and Boore 2006), (Fengxin et. al. 2006).This 
encouraged the authors to investigate the possibility of using acceleration-time histories in 
designing tuned mass damper systems. In the present work, a method is suggested to obtain the 
optimum design parameters of a TMD system when attached to SDOF or MDOF structure. In 
this method, predicted or actual earthquake records are used to compute the forces acting on the 
structure. Then the optimal TMD properties are computed as will be described.  

 
Dynamic Analysis of Shear Building Structures under Seismic Excitations 

 

 The present study is concerned with the dynamic behavior of plane shear building 
structures. A TMD damper system may be attached to the top floor as shown in Fig. 1 for linear 
elastic shear building with n degrees of freedom attached to TMD system and subjected to 
earthquake excitation, the dynamic equilibrium equation can be written (Chopra, 1995): 



 

   (a) without TMD system.     (b) with TMD system. 
Figure 1.  Shear building frame with n degrees of freedom. 
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Where [M], [C] and [K] are the mass matrix, the viscous damping matrix and the stiffness 
matrix, respectively given by: 
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It can be noticed that the size of the system matrices will be (n+1) degrees of freedom.                 
                     are   respectively   the relative acceleration, relative velocity, and the relative 
displacement vector. All these vectors are functions of time and relative to ground displacement. 
        is the ground or earthquake acceleration-time history at the base of the structure in the 
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horizontal direction. [I] is the identity matrix. 
 
Formation of Damping Matrix for Dynamic Analysis: 
 
            For the dynamic analysis of multi degrees of freedom system using Newark’s or other 
numerical methods, it is required to compute and form the mass, damping and stiffness matrices 
from the properties of the structure under consideration. The mass and stiffness matrices can be 
easily computed from the mass and stiffness properties of the structure elements following 
standard matrix structural analysis procedures. However, specifying and formation of the 
damping matrix is not straight forward. Damping as a property for multistory building structures 
can be expressed by two methods. In the first method, the modal damping ratios are estimated 
using measured data (Chopra 1995). Thus a damping ratio for each mode of vibration can be 
obtained. This method is ideal for dynamic analysis using mode superposition method and it is a 
suitable method to account for all energy dissipation in joints, non-structural elements as well as 
the elements damping. However, the main disadvantage in this method is that it is not suitable 
for numerical methods or problems with non-classical structural damping forms (MDOF 
Structure with TMD System). In the second method, damping matrix is computed from the 
damping properties of the structure components similar to mass & stiffness matrices. Although 
this is quite suitable for numerical methods but it is generally difficult to estimate these 
properties. In the present study, the two above mentioned cases are considered. In the case when 
the damping properties are given, the solution is direct, however if the modal damping ratios are 
specified for the MDOF structure, the damping matrix [C] can be computed as described below 
(Chopra 1995, Paz 1979). For n MDOF structure, let [K], [C] and [M] be the stiffness, damping 
and mass matrices. Then the modal damping ratios matrix can be defined by: 
 

            
 
where iξ  is the modal damping ratio  for the i th mode. The damping matrix [C] can be 
computed as follows:                                                                                    
        

                                                                                       ][]][][][[  ][ T MAMC φφ=                                (3)  
where, 
  
                                      ,                                      and          : Normalized modal shape matrix 
 
 
This method is used to compute the damping matrix [C] for the main structure before the 
attachment of the TMD system. Using Newmark's method and the above mentioned description, 
a MATLAB computer program was developed for the dynamic analysis of plane shear building 
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structures with TMD system when subjected to earthquake excitation. The program can deal 
with the structures when modal damping ratios are given or when damping coefficients are 
known. 
 

Suggested Method for the Optimum Design of TMD System 
 
            Considering the structure shown in Fig. 1, the basic features of the method suggested in 
this study are:- 
 
Excitation Force 
 
            In order to obtain the optimum design parameters of the TMD system, certain 
assumptions regarding the excitation force should be made. For example, (Den Hartog 1958) 
assumed that the structure mass is subjected to harmonic excitation whereas (Tsai & Lin 1993) 
assumed that the structure is subjected to harmonic base excitation. To simulate actual behavior, 
it is assumed in this study that the structure is subjected to base excitation. The excitation force 
vector is computed from acceleration-time history for a given earthquake. In a real design 
problem, a prediction for acceleration-time history should be made considering geological and 
seismological parameters of the site where the structure will be constructed. This can be 
achieved using one of the methods mentioned in the introduction section. However, in the 
present work all acceleration- time histories are taken from actual earthquake records because 
predicting earthquake records is out of the scope of the present study. 
 
Optimization Criterion and Optimization Parameter 
 
            In the present work, the optimization criterion and parameter used by many authors is 
adopted (Den Hartog 1958, Rana & Song 1998 and Tsai & Lin 1993).  In this criterion, the 
optimum design parameters cd & kd for a given md are defined as those values which minimize 
the maximum relative displacement of the structure when subjected to an excitation. The 
maximum relative displacement of a regular shear building frame usually occurs at the top floor. 
 
Statement of the Problem as Constrained Non-Linear Optimization Problem 
 
Fig. 2 shows a shear building structure provided with a tuned mass damper system at the top 
floor. When the structure is subjected to a given earthquake excitation (acceleration-time gx&& ), 
then ut is the relative displacement occurring at the top of the frame. Defining utmax as the 
maximum ut occurring during the earthquake duration. Then for a given structure properties 
([K], [C], [M]), TMD mass md and earthquake excitation gx&& , the variable utmax will be a function 
of cd & kd only. This can be put in the following optimization problem:  
 
            Find cd, kd that minimizes the following objective function:  
 
            utmax =  f(cd, kd)   subjected to the inequality                                                                    (4) 
                                        constrains cd > 0  and  kd > 0. 
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This problem can be classified as multivariable, nonlinear constrained minimization problem.  
For the treatment of such problem, one of the functions available in the MATLAB optimization 
toolbox is used. 
 
Computer Programs for Optimum Design of TMD System 
        
  A MATLAB computer program was developed for computing the optimum design 
parameters of a TMD system when attached to SDOF or MDOF structures. The development of 
this software is based on modifying the software described in previous section to include the 
optimization algorithm. Details of the MATLAB software are given by (Al-Taweel 2007). 
 

Convergence of the Proposed Method to Optimum Solution 
 
 To demonstrate the capability of the proposed method to catch the optimum design 
parameters for TMD system when attached to SDOF or MDOF structures, many problems were 
examined (Al-Taweel 2007). Two of these verification cases are discussed below. 
 
Case Study One  
 

 A single story shear building with properties shown in Fig. 3 is considered. A TMD is 
attached to the top with mass md = 1.5 ton equal to 3% of the total mass of the structure. The 
objective is to determine the optimum value of TMD stiffness kd and damping cd that will 
minimize displacement utmax at the top when the structure is subjected to El-Centro earthquake 
excitation. To understand the variation of utmax with various values of kd & cd  the first stage 
software is used to compute utmax for  kd  (40 to 70 kN/m with steps of 0.2 ) and cd  (0 to  1.9 kN-
s/m with steps of 0.1). The results are plotted as a three dimensional surface [utmax = f(cd , kd)] as 
shown in Fig. 4 and as a contour lines as shown in Fig. 5. Next, the second stage software is used 
to obtain the optimum design parameters through minimization process, as described in previous 
sections. For the  minimization process it  is  given  that  the upper  bound and the   lower  bound 
value  of   the   stiffness kd  are 0  and 1000  kN/m  respectively. While the upper bound and 
lower bound of the damping is 0 and 100 kN-s/m respectively. After running the problem, it is 
 

 

    
 
 
 
 
 
   

Figure 2.  Shear building under earthquake      
                excitation with single TMD system. 

  Figure 3.  Structure studied as verification 
                  problem in case study one. 
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found that the optimum values of stiffness and damping of the TMD are kd = 54.08 kN/m and cd 
=0.643 kN-s/m. The corresponding value of   utmax  is 0.1179m.When projecting these results on 
the contour plot in Fig. 5 it can clearly noticed that the solution given by the optimization 
software represents the minimum value for the surface or contour plot shown in Figs. 4 & 5 This 
proves the capability of the software to catch the minimum value of utmax and the corresponding 
optimum values of  kd & cd.  
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Figure 4. Variation of maxtu  with  dk  & dc  
               for example in Fig. 3 as three  
               dimensional surface. 

Figure 5.  Variation of maxtu  with  dk  & dc  
                 for example in Fig. 3 as  contour 
                 line.  

 
Case Study Two 
 
 A ten story shear building with properties shown in Fig. 6 is considered. This example 
has been investigated by (Hadi & Arfiadi 1998). A TMD is attached to the top floor with mass 
md =108 ton equal to 3% of the total mass of the structure. The objective is to determine the 
optimum values of TMD stiffness kd and damping cd that will minimize displacement utmax at the 
top (tenth) floor when the structure is subjected to El-Centro 1940 earthquake excitation. To 
understand the variation of utmax with various values of kd & cd, the dynamic analysis MATLAB 
software is used to compute utmax for values of kd   ranging from 2500 to 5000 kN/m with steps 
of 50 and values of cd ranging from 0 to 400 kN-s/m with steps of 10. The results are plotted as a 
three dimensional surface utmax = f(cd , kd)   and as a contour lines as shown in Figs. 7 and 8 
respectively. Next, the MATLAB optimization software is used to obtain the optimum design 
parameters through minimization process, as described in previous sections. After running the 
problem it is found that the optimum values of stiffness and damping of the TMD were kd = 
3217.3 kN/m and cd = 53.49 kN-s/m. The corresponding value of utmax was 0.1192m. When 
projecting these results on the contour plot in Fig. 8, it can be clearly noticed that the solution 
given by the optimization software represents the minimum value for the surface or contour plot 
shown in Figs 7 and 8. This proves the capability of the software to catch the minimum value of 
utmax and the corresponding optimum values of kd & cd. Table 1 shows  a comparison between 
the present study results for maximum floors displacements with the results obtained by (Hadi & 
Arfiadi 1998)  and  (Lee et. al. 2006) for the structure in Fig. 6. The results show that the TMD 
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system with properties computed according to present study is more efficient in reducing the 
maximum displacements in all floors than that computed by the above mentioned methods. 

 
Conclusions 

 
 From the above discussed cases and other cases discussed by Al-Taweel (2007), the 
following conclusions can be drawn: 
 

• For a given SDOF or MDOF structure, earthquake excitation and TMD mass, the present 
study method and software developed are capable of tracing and computing the optimum 
values for kd  & cd.   

 

 
 

Figure 6.  Structure Studied in case study two. 
 

 

Figure 7.  Variation of utmax with  kd  & cd    
                 for example in Fig. 6 as a surface. 

   Figure 8. Variation of utmax with  kd  & cd  for 
               example in Fig. 6 as contour line. 
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• The TMD systems designed according to the present study method were more effective 
in reducing maximum structure displacement than other methods. This was also found 
true for a wide range of earthquake excitations and structure frequencies. 

• The efficiency of the TMD system designed according to the present study method and 
other methods were generally affected by the earthquake excitation. This means that the 
earthquake characteristics have an important effect on the TMD behavior and should be 
considered in the design process. 

• With the increase of research about predicting earthquake acceleration-time history, the 
importance of the present study will increase as an efficient method for designing TMD 
systems. 
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